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SERVICE MESH OVERVIEW
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“A and B can exchange packets”

“A and B can exchange packets in a way that validates the identity on 
both sides; has clear authorization semantics; is confidential to third 

parties; and is measurable and inspectable”
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CONTROL PLANE

▸TLS certificates for the proxy 

▸Service Discovery 

▸Service Profiles 

▸Automatic Proxy Injection 

▸Dashboard + Metrics 

▸API interface for CLI commands (tap, stat, etc…)



PROXY (DATA PLANE)

▸Ultralight transparent proxy written in Rust 

▸Automatic Prometheus metrics export for HTTP and TCP 
traffic. 

▸ Latency-aware, layer-7 load balancing 

▸Automatic TLS 

▸An on-demand diagnostic tap API



INJECTION

▸Usually accomplished by the proxy-injector component 

▸Can be automatic or manual 

▸An init container added, which setups iptables rules for 
the pod 

▸A container that runs the proxy, intercepting traffic
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CORE CONCEPTS

▸Observability: Collecting actionable traffic metrics 

▸Security: Encrypting traffic between services 

▸Reliability: Ensuring services are available 

▸Traffic Management: Routing traffic to services



MULTICLUSTER DEEPDIVE



WHY MULTIPLE CLUSTERS ?

▸Traffic Migration 

▸Canary Deployments 

▸Different Environments 

▸Failover



CORE CONCEPTS

▸Secure: everything happens over mTLS  

▸Kubernetes-first: remote services should appear as K8s services 

▸No SPOF: no single cluster is blessed or magical 

▸Transparent: applications do not need to know whether a 
service is remote or local 

▸Network independent: only requirement is gateway 
connectivity
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ARCHITECTURE

▸Service mirror - monitors the exported state of the target 
cluster and replicating it 

▸Gateway - responsible for routing incoming traffic to the 
appropriate target services 

▸Credentials - service account (target cluster) and a secret 
containing k8s api config (source cluster)



DEMO TIME

▸Two clusters - east and west 

▸Each have a backend-svc installed 

▸A test client deployed on cluster east 

▸We want to split the traffic to backend-svc between east 
and west
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FUTURE WORK

▸Service mirror controller per target cluster 

▸ Introduce a CRD to better represent target cluster 
information 

▸Support traffic policy, finer grained permissions control 

▸Support for TCP traffic



Q&A

https://github.com/zaharidichev/talks


