
MULTICLUSTER DEEP DIVE
ZAHARI DICHEV

▸Service Mesh Overview

▸Multicluster Concepts

▸Architecture

▸Demo

▸The Life Of a Request Across Clusters

▸Q&A

AGENDA

▸Service Mesh Overview

▸Multicluster Concepts

▸Architecture

▸Demo

▸The Life Of a Request Across Clusters

▸Q&A

AGENDA

SERVICE MESH OVERVIEW

“A and B can exchange packets”

“A and B can exchange packets”

VS

“A and B can exchange packets”

“A and B can exchange packets in a way that validates the identity on
both sides; has clear authorization semantics; is confidential to third

parties; and is measurable and inspectable”

VS

DISTRIBUTED SYSTEM

Client

Database

DISTRIBUTED SYSTEM

Client
API Gateway

Database

KUBERNETES CLUSTER

DISTRIBUTED SYSTEM

Client

Service A

Service B

Service C

API Gateway

Database

KUBERNETES CLUSTER

DISTRIBUTED SYSTEM

Client

Service A

Service B

Service C

API Gateway

Database

KUBERNETES CLUSTER

DISTRIBUTED SYSTEM

Client

Service A

Service B

Service C

API Gateway

Redis Cache

Database

KUBERNETES CLUSTER

DISTRIBUTED SYSTEM

Client

Service A

Service B

Service C

API Gateway

Redis Cache

Database

KUBERNETES CLUSTER

DISTRIBUTED SYSTEM

Client

Service A

Service B

Service C

API Gateway

Redis Cache

Database

KUBERNETES CLUSTER

DISTRIBUTED SYSTEM

Client

Service A

Service B

Service C

API Gateway

Redis Cache

Database

KUBERNETES CLUSTER

DISTRIBUTED SYSTEM

Client

Service A

Service B

Service C

API Gateway

Redis Cache

Database

KUBERNETES CLUSTER

DISTRIBUTED SYSTEM

Client

Service A

Service B

Service C

API Gateway

Redis Cache

Database

KUBERNETES CLUSTER

DISTRIBUTED SYSTEM

Client

Service A

Service B

Service C

API Gateway

Redis Cache

Database

KUBERNETES CLUSTER

Proxy

Proxy

Proxy

Proxy

DISTRIBUTED SYSTEM

Client

Service A

Service B

Service C

API Gateway

Redis Cache

Database

KUBERNETES CLUSTER

Proxy

Proxy

Proxy

Proxy

Database

DISTRIBUTED SYSTEM

Client

Service A

Service B

Service C

API Gateway

Redis Cache

Database

KUBERNETES CLUSTER

Proxy

Proxy

Proxy

Proxy

DatabaseControl Plane

CONTROL PLANE

▸TLS certificates for the proxy

▸Service Discovery

▸Service Profiles

▸Automatic Proxy Injection

▸Dashboard + Metrics

▸API interface for CLI commands (tap, stat, etc…)

PROXY (DATA PLANE)

▸Ultralight transparent proxy written in Rust

▸Automatic Prometheus metrics export for HTTP and TCP
traffic.

▸ Latency-aware, layer-7 load balancing

▸Automatic TLS

▸An on-demand diagnostic tap API

INJECTION

▸Usually accomplished by the proxy-injector component

▸Can be automatic or manual

▸An init container added, which setups iptables rules for
the pod

▸A container that runs the proxy, intercepting traffic

INJECTION

Client

Application
Container

KUBERNETES POD

Client

Incoming
traffic

Outgoing
traffic

INJECTION

Client

Application
Container

KUBERNETES POD

Init Container

Client

Incoming
traffic

Outgoing
traffic

INJECTION

Client

Application
Container

KUBERNETES POD

Init Container

Proxy

Client

Incoming
traffic

Outgoing
traffic

INJECTION

Client

Application
Container

KUBERNETES POD

Init Container

Proxy

Client

Incoming
traffic

Outgoing
traffic

INJECTION

Client

Application
Container

KUBERNETES POD

Init Container

Proxy

Client

Incoming
traffic

Outgoing
traffic

INJECTION

Client

Application
Container

KUBERNETES POD

Init Container

Proxy

Client

Incoming
traffic

Outgoing
traffic

INJECTION

Client

Application
Container

KUBERNETES POD

Init Container

Proxy

Client

Incoming
traffic

Outgoing
traffic

CORE CONCEPTS

▸Observability: Collecting actionable traffic metrics

▸Security: Encrypting traffic between services

▸Reliability: Ensuring services are available

▸Traffic Management: Routing traffic to services

MULTICLUSTER DEEPDIVE

WHY MULTIPLE CLUSTERS ?

▸Traffic Migration

▸Canary Deployments

▸Different Environments

▸Failover

CORE CONCEPTS

▸Secure: everything happens over mTLS

▸Kubernetes-first: remote services should appear as K8s services

▸No SPOF: no single cluster is blessed or magical

▸Transparent: applications do not need to know whether a
service is remote or local

▸Network independent: only requirement is gateway
connectivity

ARCHITECTURE

Client

CLUSTER EAST

service-mirror

Linkerd

Linkerd multicluster

gateway

Local services
backend-svc

Remote services
backend-svc-west

cluster west creds

Client

CLUSTER WEST

service-mirror

Linkerd

Linkerd multicluster

gateway

Local services
backend-svc

Remote services
Backend-svc-east

cluster east creds

ARCHITECTURE

▸Service mirror - monitors the exported state of the target
cluster and replicating it

▸Gateway - responsible for routing incoming traffic to the
appropriate target services

▸Credentials - service account (target cluster) and a secret
containing k8s api config (source cluster)

DEMO TIME

▸Two clusters - east and west

▸Each have a backend-svc installed

▸A test client deployed on cluster east

▸We want to split the traffic to backend-svc between east
and west

BUT… HOW DOES IT WORK?

BUT… HOW DOES IT WORK?

Client pod

BUT… HOW DOES IT WORK?

Client pod

CLUSTER EAST

BUT… HOW DOES IT WORK?

Client pod

GET http://backend-svc:8888 CLUSTER EAST

http://backend-svc:8888

BUT… HOW DOES IT WORK?

Client pod

GET http://backend-svc:8888 CLUSTER EAST

http://backend-svc:8888

BUT… HOW DOES IT WORK?

Client pod

backend-svc-west

GET http://backend-svc:8888 CLUSTER EAST

http://backend-svc:8888

BUT… HOW DOES IT WORK?

Client pod

backend-svc-west

GET http://backend-svc:8888

Endpoints: 34.16.55.9:4180

CLUSTER EAST

http://backend-svc:8888

BUT… HOW DOES IT WORK?

Client pod

backend-svc-west

GET http://backend-svc:8888

Endpoints: 34.16.55.9:4180

Proxy

CLUSTER EAST

http://backend-svc:8888

BUT… HOW DOES IT WORK?

Client pod

backend-svc-west

GET http://backend-svc:8888

Endpoints: 34.16.55.9:4180

Proxy

linkerd-dst

CLUSTER EAST

http://backend-svc:8888

BUT… HOW DOES IT WORK?

Client pod

backend-svc-west

GET http://backend-svc:8888

Endpoints: 34.16.55.9:4180

Proxy

linkerd-dst
Discovery query

CLUSTER EAST

http://backend-svc:8888

BUT… HOW DOES IT WORK?

Client pod

backend-svc-west

GET http://backend-svc:8888

Endpoints: 34.16.55.9:4180

Proxy

linkerd-dst
Discovery query

Expected identity,
FQDN of target service

CLUSTER EAST

http://backend-svc:8888

BUT… HOW DOES IT WORK?

Client pod

backend-svc-west

GET http://backend-svc:8888

Endpoints: 34.16.55.9:4180

Proxy

linkerd-dst
Discovery query

Expected identity,
FQDN of target service

CLUSTER EAST

http://backend-svc:8888

BUT… HOW DOES IT WORK?

Client pod

backend-svc-west

GET http://backend-svc:8888

Endpoints: 34.16.55.9:4180

Proxy

linkerd-dst
Discovery query

Expected identity,
FQDN of target service

External Ip:
34.16.55.9:4180

CLUSTER EAST CLUSTER WEST

http://backend-svc:8888

BUT… HOW DOES IT WORK?

Client pod

backend-svc-west

GET http://backend-svc:8888

Endpoints: 34.16.55.9:4180

Proxy

linkerd-dst
Discovery query

Expected identity,
FQDN of target service

linkerd-gateway

Proxy

External Ip:
34.16.55.9:4180

CLUSTER EAST CLUSTER WEST

http://backend-svc:8888

BUT… HOW DOES IT WORK?

Client pod

backend-svc-west

GET http://backend-svc:8888

Endpoints: 34.16.55.9:4180

Proxy

linkerd-dst
Discovery query

Expected identity,
FQDN of target service

linkerd-gateway

Proxy

backend-svc

Proxy

External Ip:
34.16.55.9:4180

CLUSTER EAST CLUSTER WEST

http://backend-svc:8888

FUTURE WORK

▸Service mirror controller per target cluster

▸ Introduce a CRD to better represent target cluster
information

▸Support traffic policy, finer grained permissions control

▸Support for TCP traffic

Q&A

https://github.com/zaharidichev/talks

