
1

Virtualization + containers = security?

2

Virtualization + containers = security?

3

Virtualization + containers = security?

4

Virtualization + containers = security?

5

But wait? Aren't VMs slow and heavyweight?

6

• Boot time?
• Memory footprint?

• Especially for environments
like serverless??!!

VMs are becoming lightweight

• Thin monitors
• e.g., AWS Firecracker
• Reduce complexity for performance (e.g., no PCI)

7

Host Kernel/Hypervisor
(e.g., Linux/KVM)

app

Monitor Process
(e.g., QEMU)

Guest Kernel
(e.g., Linux)

Low level of
abstraction
(e.g., virtual
hardware)

VMs

VMs are becoming lightweight

8

Host Kernel/Hypervisor
(e.g., Linux/KVM)

app

Monitor Process

Low level of
abstraction
(e.g., virtual
hardware)

VMs

Guest Kernel
(e.g., Linux)

• Thin monitors
• e.g., AWS Firecracker
• Reduce complexity for performance (e.g., no PCI)

Firecracker boot times as reported
in Agache et al., NSDI 2020

VMs are becoming lightweight

9

Host Kernel/Hypervisor
(e.g., Linux/KVM)

app

Monitor Process

Low level of
abstraction
(e.g., virtual
hardware)

VMs

Guest Kernel
(e.g., Linux)

• Thin monitors
• e.g., AWS Firecracker
• Reduce complexity for performance (e.g., no PCI)

Firecracker boot times as reported
in Agache et al., NSDI 2020

Manco et al., SOSP 2017

VMs are becoming lightweight

10

Host Kernel/Hypervisor
(e.g., Linux/KVM)

app

Monitor Process

Low level of
abstraction
(e.g., virtual
hardware)

VMs

Guest Kernel
(e.g., Linux)

• Thin monitors
• e.g., AWS Firecracker
• Reduce complexity for performance (e.g., no PCI)

• What about thin guests?

VMs are becoming lightweight

• Thin monitors
• e.g., AWS Firecracker
• Reduce complexity for performance (e.g., no PCI)

• What about thin guests?
• Userspace: (e.g., Ubuntu --> Alpine Linux)
• Kernel configuration (e.g., TinyX)
• How thin can you go?

11

Host Kernel/Hypervisor
(e.g., Linux/KVM)

app

Monitor Process

Guest Kernel

Low level of
abstraction
(e.g., virtual
hardware)

VMs

• An application linked with library OS components
• Run on virtual hardware (like) abstraction
• Single CPU

• Language-specific
• MirageOS (OCaml)
• IncludeOS (C++)

• Legacy-oriented
• Rumprun (NetBSD-based)
• Hermitux
• OSv

Unikernels are thin guests to the extreme

VM

12

Claim binary compatibility
with Linux

Unikernels are great

• Small kernel size
• Fast boot time
• Performance
• Security

Unikernels are great… but

• Small kernel size
• Fast boot time
• Performance
• Security

• Lack full Linux support
• Hermitux: supports only 97 system calls
• OSv:

• application needs to be compiled with –PIE, can’t use TLS
• Static-linked applications are not supported
• Fork() , execve() are not supported
• Special files are not supported such as /proc
• Signal mechanism is not complete

• Rumprun: only 37 curated applications
• Community is too small to keep it rolling

Can Linux
> be as small as

> boot as fast as
> outperform

unikernels?

Lupine Linux
“Unikernel”

Can Linux
> be as small as

> boot as fast as
> outperform

unikernels?

Lupine Linux
“Unikernel”

• Spoiler alert: Yes!
• 4MB image size
• 23 ms boot time
• Up to 33% higher throughput

Segue to Austing talking about...

• Lupine Linux

17

Lupine Linux Overview and Roadmap

18

Unikernel-like
Specialization of Linux

via Kconfig

Linux source
Lupine Linux
“Unikernel”

Application manifest

Application (container) App rootfs

• Introduction
• Lupine Linux
• Evaluation
• Related Work

Unikernels are all about specialization

• Unikernels include only what
is needed

• Linux is very configurable
• Kconfig
• 16,000 options

• Drivers
• Filesystems
• Processor features
• ...

Specializing Linux through configuration

20

• Start with Firecracker
MicroVM configuration
• Can we remove even

more?
• Application-specific

options
• Multiprocessing
• HW management

Specializing for lightweight VMs

• Do we need support for multiple trust domains?
• Related to isolating, accounting for processes

• Cgroups, namespaces, SElinux, seccomp, KPTI
• SMP, NUMA
• Module support

• Do we need support for general hardware?
• Intended to run as VMs in the cloud
• MicroVM removes many drivers and arch-specific configs
• Lupine removes more, including power mgmt

21

Application-specific options

• Example: system calls

• Kernel services
• e.g., /proc, sysctl

• Kernel library
• Crypto routines
• Compression routines

22

Option Enabled System Call(s)
ADVISE_SYSCALLS madvise, fadvise64
AIO io_setup, io_destroy, io_submit, io_cancel, io_getevents
BPF_SYSCALL bpf
EPOLL epoll_ctl, epoll_create, epoll_wait, epoll_pwait
EVENTFD eventfd, eventfd2
FANOTIFY fanotify_init, fanotify_mark
FHANDLE open_by_handle_at, name_to_handle_at
FILE_LOCKING �ock
FUTEX futex, set_robust_list, get_robust_list
INOTIFY_USER inotify_init, inotify_add_watch, inotify_rm_watch
SIGNALFD signalfd, signalfd4
TIMERFD timerfd_create, timerfd_gettime, timerfd_settime

Table 1. Linux con�guration options that enable/disable
system calls.

A Lupine kernel compiled for redis does not contain the
AIO or EVENTFD-related system calls.

In addition to the above, some applications expect other
services from the kernel, for instance, the /proc �lesystem or
sysctl functionality. Moreover, the Linux kernel maintains
a substantial library that resides in the kernel because of its
traditional position as a more privileged security domain.
Unikernels do not maintain the traditional privilege separa-
tion but may make use of this functionality directly or indi-
rectly by using a protocol or service that needs it (e.g., cryp-
tographic routines for IPsec). We marked 20 compression-
related and 55 crypto-related options from the microVM
con�guration as application-speci�c. Finally, Linux contains
signi�cant facilities for debugging; a Lupine unikernel can
select up to 65 debugging and information-related kernel
con�guration options from microVM’s con�guration.
In total, we classi�ed approximately 311 con�guration

options as application-speci�c as shown in Figure 4. In Sec-
tion 4, we will evaluate the degree of application specializa-
tion via Linux kernel con�guration (and its e�ects) achieved
in Lupine for common cloud applications.

3.1.2 Unnecessary options.
Some options in microVM’s con�guration will, by de�ni-
tion, never be needed by any Lupine unikernel so they can
be safely eliminated. We categorize these options into two
groups: (1) those that stem from the single-process nature of
unikernels and (2) those that stem from the expected virtual
hardware environment in the cloud.

Unikernels are not intended for multiple processes. The
Linux kernel is intended to runmultiple processes, thus requir-
ing con�gurable functionality for synchronization, sched-
uling and resource accounting. For example, cgroups and
namespaces are speci�c mechanisms that limit, account for
and isolate resource utilization between processes or groups
of processes. We classi�ed about 20 con�guration options
related to cgroups and namespaces in Firecracker’s microVM
con�guration.

Furthermore, the kernel is usually run in a separate, more
privileged security domain than the application. As such,
the kernel contains enhanced access control systems such
as SELinux and functionality to guard the crossing from the
application domain to the kernel domain, such as seccomp
�lters, all of which are all unnecessary for unikernels More
importantly, security options with a severe impact on per-
formance are also unnecessary for this reason. For example,
KPTI (kernel page table isolation [9]) forbids the mapping
of kernel pages into processes’ page table to mitigate the
Meltdown [39] vulnerability. This dramatically a�ects sys-
tem call performance; when testing with KPTI on Linux 5.0
we measured a 10x slowdown in system call latency. In total,
we eliminated 12 con�guration options due to the single
security domain.
Linux is well equipped to run on multiple-processor sys-

tems. As a result, the kernel contains various options to in-
clude and tune SMP and NUMA functionality. On the other
hand, since most unikernels do not support fork, the stan-
dard approach to take advantage of multiple processors is to
run multiple unikernels.
Finally, Linux contains facilities for dynamically loading

functionality through modules. A single application facili-
tates the creation of a kernel that contains all functionality
it needs at build time.
Overall, we attribute the removal of 89 con�guration op-

tions to the single-process—“uni”—characteristics of uniker-
nels as shown in Figure 4 (under "Multiple Processes"). In
Section 5, we examine the relaxation of this property.

Unikernels are not intended for general hardware. De-
fault con�gurations for Linux are intended to result in a
general-purpose system. Such a system is intimately involved
in managing hardware with con�gurable functionality to
perform tasks, including power management, hotplug and
driving and interfacing with devices. Unikernels, which are
typically intended to run as virtual machines in the cloud,
can leave many physical hardware management tasks to the
underlying host or hypervisor. Firecracker’s microVM ker-
nel con�guration demonstrates the �rst step by eliminating
many unnecessary drivers and architecture-speci�c con�g-
uration options (as shown in Figure 3). Lupine’s con�gura-
tion goes further by classifying 150 con�guration options—
including 24 options for power management that can be left
to the underlying host—as unnecessary for Lupine uniker-
nels as shown in Figure 4.

3.2 Eliminating System Call Overhead
Kernel Mode Linux [41] is an existing patch to Linux that
enables normal user processes to run in kernel mode, share
an address space with the kernel and eliminate the need for
expensive privilege transitions or context switches during
system calls. Yet they are processes that, unlike kernel mod-
ules, do not require any change to the programming model

5

How to get an app-specific kernel config

23

• Start with lupine-base
• Manual trial and error

• Guided by application
output

• E.g., the futex facility
returned an unexpected
error code

=> CONFIG_FUTEX

• In general, this is a hard
problem

Lupine Linux Overview and Roadmap

24

Unikernel-like
Specialization of Linux

via Kconfig

Linux source
Lupine Linux
“Unikernel”

Application manifest

Application (container) App rootfs

• Introduction
• Lupine Linux
• Evaluation
• Related Work

Evaluation setup

• Machine setup
• CPU: Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.80GHz
• Mem: 16 GB

• VM setup
• Hypervisor : firecracker
• 1 VCPU, 512 MB Mem
• Guest: Linux 4.0

Configuration Diversity

• Manually determined app-specific configurations
• 20 top apps on Docker hub (83% of all downloads)
• Only 19 configuration options required to run all

20 applications: lupine-general

26

improvement in macrobenchmarks, indicating that system
call overhead should not be a primary concern for uniker-
nel developers. Finally, we show that Lupine avoids major
pitfalls of POSIX-like unikernels that stem from not being
Linux-based, including both the lack of support for unmod-
i�ed applications and performance from highly-optimized
code.

4.1 Con�guration diversity
Lupine attempts to mimic the only-what-you-need approach
of unikernels in order to achieve some of their performance
and security characteristics. In this subsection, we evaluate
how much specialization of the Linux kernel occurs in prac-
tice when considering the most popular cloud applications.
Unlike other unikernel approaches, Lupine poses no re-

strictions on applications and requires no application modi-
�cations, alternate build processes, or curated package lists.
As a result, we were able to directly run the most popu-
lar cloud applications on Lupine unikernels. To determine
popularity, we used the 20 most downloaded container im-
ages from Docker Hub [2]. We �nd that popularity follows a
power-law distribution: 20 applications account for 83% of
all downloads. Table 3 lists the applications.
For each application, in place of an application manifest,

we carried out the following process to determine the mini-
mal viable con�guration. First we ran the application as a
standard container to determine success criteria for the ap-
plication. While success criteria could include sophisticated
test suites or achieving performance targets, we limited our-
selves to the following tests. Language runtimes like golang,
openjdk or python were tested by compiling (when applica-
ble) a hello world application and testing that the message
was correctly printed. Servers like elasticsearch or nginx
were tested with simple queries or health status queries.
haproxy and traefik were tested by checking the logs in-
dicating that they were ready to accept tra�c. We discuss
the potential pitfalls of this approach in Section 6.

Once we had determined success criteria, we attempted to
run the application on a Linux kernel built with the lupine-
base con�guration as described in Section 3.1. Recall that
the base con�guration is derived from microVM but lacks
about 550 con�guration options that we classi�ed as hard-
ware management, multiprocessing and application-speci�c.
Some applications require no further con�guration options
to be enabled beyond lupine-base. For others, we added new
options one by one while testing the application at each step.
We expected all new options to be from the set classi�ed as
application-speci�c.
The process was manual: application output guided

which con�guration options to try. For example, an er-
ror message like “the futex facility returned an unexpected
error code” indicated that we should add CONFIG_FUTEX,
“epoll_create1 failed: function not implemented” suggested we
try CONFIG_EPOLL and “can’t create UNIX socket” indicated

Name Downloads Description
Options atop
lupine-base

nginx 1.7 Web server 13
postgres 1.6 Database 10
httpd 1.4 Web server 13
node 1.2 Language runtime 5
redis 1.2 Key-value store 10
mongo 1.2 NOSQL database 11
mysql 1.2 Database 9
trae�k 1.1 Edge router 8
memcached 0.9 Key-value store 10
hello-world 0.9 C program “hello” 0
mariadb 0.8 Database 13
golang 0.6 Language runtime 0
python 0.5 Language runtime 0
openjdk 0.5 Language runtime 0
rabbitmq 0.5 Message broker 12
php 0.4 Language runtime 0
wordpress 0.4 PHP/mysql blog tool 9
haproxy 0.4 Load balancer 8
in�uxdb 0.3 Time series database 11
elasticsearch 0.3 Search engine 12

Table 3. Top twenty most popular applications on Docker
Hub (by billions of downloads) and the number of additional
con�guration options each requires beyond the lupine-base
kernel con�guration. 9

Figure 5. Growth of Lupine application con�gurations to
support more apps.

CONFIG_UNIX. Some error messages were less helpful and
required some trial and error. Finally, some messages indi-
cated that the application was likely not well-suited to be a
unikernel. For example, postgres in Linux is made up of �ve
processes (background writers, checkpointer, and replicator).
It required CONFIG_SYSVIPC, an option we had classi�ed as
multi-process related and therefore not appropriate for a
unikernel. Lupine can run such an application despite its ob-
vious non-unikernel character, which is an advantage over
other unikernel-based approaches. We will discuss the im-
plications of relaxing unikernel restrictions in Section 5.

9We exclude the Docker daemon in this table because Linux 4.0 does not
support layered �le systems, a prerequisite for Docker.

7

improvement in macrobenchmarks, indicating that system
call overhead should not be a primary concern for uniker-
nel developers. Finally, we show that Lupine avoids major
pitfalls of POSIX-like unikernels that stem from not being
Linux-based, including both the lack of support for unmod-
i�ed applications and performance from highly-optimized
code.

4.1 Con�guration diversity
Lupine attempts to mimic the only-what-you-need approach
of unikernels in order to achieve some of their performance
and security characteristics. In this subsection, we evaluate
how much specialization of the Linux kernel occurs in prac-
tice when considering the most popular cloud applications.
Unlike other unikernel approaches, Lupine poses no re-

strictions on applications and requires no application modi-
�cations, alternate build processes, or curated package lists.
As a result, we were able to directly run the most popu-
lar cloud applications on Lupine unikernels. To determine
popularity, we used the 20 most downloaded container im-
ages from Docker Hub [2]. We �nd that popularity follows a
power-law distribution: 20 applications account for 83% of
all downloads. Table 3 lists the applications.
For each application, in place of an application manifest,

we carried out the following process to determine the mini-
mal viable con�guration. First we ran the application as a
standard container to determine success criteria for the ap-
plication. While success criteria could include sophisticated
test suites or achieving performance targets, we limited our-
selves to the following tests. Language runtimes like golang,
openjdk or python were tested by compiling (when applica-
ble) a hello world application and testing that the message
was correctly printed. Servers like elasticsearch or nginx
were tested with simple queries or health status queries.
haproxy and traefik were tested by checking the logs in-
dicating that they were ready to accept tra�c. We discuss
the potential pitfalls of this approach in Section 6.

Once we had determined success criteria, we attempted to
run the application on a Linux kernel built with the lupine-
base con�guration as described in Section 3.1. Recall that
the base con�guration is derived from microVM but lacks
about 550 con�guration options that we classi�ed as hard-
ware management, multiprocessing and application-speci�c.
Some applications require no further con�guration options
to be enabled beyond lupine-base. For others, we added new
options one by one while testing the application at each step.
We expected all new options to be from the set classi�ed as
application-speci�c.
The process was manual: application output guided

which con�guration options to try. For example, an er-
ror message like “the futex facility returned an unexpected
error code” indicated that we should add CONFIG_FUTEX,
“epoll_create1 failed: function not implemented” suggested we
try CONFIG_EPOLL and “can’t create UNIX socket” indicated

Name Downloads Description
Options atop
lupine-base

nginx 1.7 Web server 13
postgres 1.6 Database 10
httpd 1.4 Web server 13
node 1.2 Language runtime 5
redis 1.2 Key-value store 10
mongo 1.2 NOSQL database 11
mysql 1.2 Database 9
trae�k 1.1 Edge router 8
memcached 0.9 Key-value store 10
hello-world 0.9 C program “hello” 0
mariadb 0.8 Database 13
golang 0.6 Language runtime 0
python 0.5 Language runtime 0
openjdk 0.5 Language runtime 0
rabbitmq 0.5 Message broker 12
php 0.4 Language runtime 0
wordpress 0.4 PHP/mysql blog tool 9
haproxy 0.4 Load balancer 8
in�uxdb 0.3 Time series database 11
elasticsearch 0.3 Search engine 12

Table 3. Top twenty most popular applications on Docker
Hub (by billions of downloads) and the number of additional
con�guration options each requires beyond the lupine-base
kernel con�guration. 9

 8
 10
 12
 14
 16
 18
 20

 0 2 4 6 8 10 12 14 16 18 20N
um

be
r c

on
�g

 o
pt

io
ns

Support for top x apps

Figure 5. Growth of Lupine application con�gurations to
support more apps.

CONFIG_UNIX. Some error messages were less helpful and
required some trial and error. Finally, some messages indi-
cated that the application was likely not well-suited to be a
unikernel. For example, postgres in Linux is made up of �ve
processes (background writers, checkpointer, and replicator).
It required CONFIG_SYSVIPC, an option we had classi�ed as
multi-process related and therefore not appropriate for a
unikernel. Lupine can run such an application despite its ob-
vious non-unikernel character, which is an advantage over
other unikernel-based approaches. We will discuss the im-
plications of relaxing unikernel restrictions in Section 5.

9We exclude the Docker daemon in this table because Linux 4.0 does not
support layered �le systems, a prerequisite for Docker.

7

Kernel image size

• Configuration is effective
• 4 MB
• 27% - 33% of MicroVM

27

0

2

4

6

8

10

12

14

16

18M
B

MicroVM Lupine Lupine-general Hermitux Osv Rump

Kernel image size

• Configuration is effective
• 4 MB
• 27% - 33% of MicroVM

• lupine-general is
comparable with
unikernels! (Rump, OSv)

28

0

2

4

6

8

10

12

14

16

18M
B

MicroVM Lupine Lupine-general Hermitux Osv Rump

Boot time

• Measured via I/O port
write from guest
• Way better than

MicroVM! (59%)

29

0

10

20

30

40

50

60

70

m
s

MicroVM Lupine Lupine-general Hermitux Osv Rump

Boot time

• Measured via I/O port
write from guest
• Way better than

MicroVM! (59%)

• Even Lupine-general
boots faster than
Hermitux, OSv

30

0

10

20

30

40

50

60

70

m
s

MicroVM Lupine Lupine-general Hermitux Osv Rump

Memory Footprint

• Repeatedly tested app
with decreasing
memory allotment
• Better than

MicroVM(28%)

31

0

5

10

15

20

25

30

35

40M
B

MicroVM Lupine Lupine-general Hermitux Osv Rump
hello redisnginx

Memory Footprint

• Repeatedly tested app
with decreasing
memory allotment
• Better than

MicroVM(28%)

32

0

5

10

15

20

25

30

35

40M
B

MicroVM Lupine Lupine-general Hermitux Osv Rump
hello redisnginx

Application performance

• Throughput normalized
to MicroVM
• Lupine outperforms

MicroVM by up to 29%

33

Related work

• Unikernel-like work that leverages Linux
• LightVM (TinyX): VMs can be as light as containers
• X-Containers: Xen paravirt for Linux to be a libOS
• UKL: modify Linux build to include kernel call to application main

• Linux configuration studies
• Alharthi et al.: 89% of 1530 studied vulnerabilities nullified via config specialization
• Kurmus et al.: 50-85% of attack surface reduction via configuration

Segue back to Dan for open challenges...

35

Takeaways

• Specialization is important:
• 73% smaller image size, 59% faster boot time, 28% lower memory footprint

and 33% higher throughput than the state-of-the-art microVM

• Specialization per application may not be:
• 19 options (lupine-general) cover at least 83% of downloaded apps with at

most 4% reduction in performance

36

Getting Lupine benefits into community

• Most benefits are achieved through specialized config
• But lupine-general.config can run top 20 Docker containers

• Challenges/risks
• How do we know lupine-general is general enough?

• Research needed: discovery vs. fallback?
• Tension with container ecosystem (kata agent --> more general kernel config?)

• Research needed: bloat-aware agent design?

Continuing challenges with virtualization-
enabled containers

• Sharing for container-like performance
• E.g., volume sharing

• Virtiofs

• How to ensure safety?

38

Host Kernel/Hypervisor
(e.g., Linux/KVM)

app

Monitor Process
(e.g., QEMU)

Guest Kernel
(e.g., Linux)

Low level of
abstraction
(e.g., virtual
hardware)

VMs

Thank you!

• EuroSys 20 Paper: https://dl.acm.org/doi/10.1145/3342195.3387526
• https://github.com/hckuo/Lupine-Linux

• djwillia@us.ibm.com
• hckuo2@illinois.edu

39

https://dl.acm.org/doi/10.1145/3342195.3387526
https://github.com/hckuo/Lupine-Linux
http://us.ibm.com
http://illinois.edu

