
Matteo Olivi, Independent

Building a
Software-Defined-Network
Using K8s API Machinery and Controllers

References

Authors:
Matteo Olivi, recent Comp Eng MSc from the University of Bologna:

github: matte21
email: matteoolivi7@gmail.com
slack: matte21

Mike Spreitzer, principal RSM at IBM Research:
github: MikeSpreitzer
email: mspreitz@us.ibm.com
slack: mspreitz

Project: https://github.com/MikeSpreitzer/kube-examples/tree/add-kos/staging/kos

https://github.com/MikeSpreitzer/kube-examples/tree/add-kos/staging/kos

Why do this?

Test and demonstrate that K8s controller
pattern and API machinery are general
building blocks, not just for K8s.

We built KOS (K8s OvS SDN).

KOS manages VXLAN virtual networks.

NOT for production.

Runs only on Linux.

Agenda

1. VXLAN.
2. K8s controller pattern.
3. KOS API.
4. KOS architecture.
5. Interesting, general challenges.

VXLAN

Goal: overlay virtualized Ethernet networks over IP underlay networks.

Features:
• Isolation and scalability.
• Tunneling-via-encapsulation protocol.

KOS dynamically configures
VXLAN overlay networks.

Node A Node B Node C

Underlay IP network

Overlay
network 1

Overlay
network 2

K8s controller pattern

An API object has two sections:
• desired state (spec)
• observed state (status)

K8s control plane is a set of control loops (controllers) that:
• listen for API objects notifications (create/update/delete).
• modify “real world” to drive it towards API objects desired state.
• write back observed, real world state into API object status (with MVCC).

Anatomy of a K8s controller

API objects

Cache

Informer
API Server

Notification about
API object

Change
notification

Notification
handler

work
queue

Put API
object ref

Pop API
object ref

Worker
threads

Retrieve whole
API object

Process API
object

Controller

KOS API

Like in K8s, users interact with KOS via CRUD operations on API objects.

KOS defines three custom API object types:
• Subnet: an IPv4 subnet in a VXLAN virtual network.
• NetworkAttachment (NA): an interface on a VXLAN virtual network.
• IPLock: more details later.

Custom types are implemented in custom API servers.

API objects examples

apiVersion: network.example.com/v1alpha1
kind: NetworkAttachment
metadata:
name: na1
namespace: ns1

spec:
subnet: s1
node: node1

status:
guestIP: 192.168.10.0
guestMAC: 02:a8:0a:00:00:01
addressVNI: 1
hostIP: 10.190.65.131

apiVersion: network.example.com/v1alpha1
kind: Subnet
metadata:
name: s1
namespace: ns1

spec:
vni: 1
ipv4: 192.168.10.0/24

status:
validated: true

NA implementation

KOS implements a NA with:
1. A virtual IP address.
2. A virtual MAC address.
3. A Linux network interface on the underlay node of the NA.

Plus…

On every underlay node, there’s an OvS switch that supports VXLAN.

KOS:
1. connects the network interface to the switch.
2. sets up the switch to ENCAP/DECAP all traffic from/to the network interface.

KOS architecture

API ServersAPI Servers

etcdetcdetcd IPAM
Controller

Subnet
Validator

Connection
Agent Open

vSwitch

virtual switch

network
interfacescreate/delete

config VXLAN tunnels

Worker nodes

CRUD API objects

= API Machinery

KOS Deployment

KOS runs as a K8s workload.

But…

could also be deployed on its own.

K8s cluster

Pod Pod…

KOS components

Multi-object invariants pt. 1

For Subnets with same vni:
• (A): CIDR blocks MUST NOT overlap.
• (B): K8s namespaces must be the same.

Creation of a subnet that leads to a violation of (A) or (B) should fail.

So… validation must happen before creation, in API servers.

Problem of enforcing an invariant across multiple API objects of same type.

Multi-object invariants pt. 2

Problem: conflicting subnets could be validated in parallel.

This validation is unreliable if done before subnet is created.

Multi-object invariants pt. 3

Can’t guarantee that no conflicting subnets are created L.

Next best thing: if conflicting subnets exist, consumers use at most one. How?

Introduce status.validated field.

A subnet can be used only if status.validated = true.

If conflicting subnets exist, at most one has status.validated = true.

Multi-object invariants pt. 4

Subnet Validator:
• writes Subnets’ status.validated.
• singleton controller.
• has an informer on Subnets.

Multi-object invariants pt. 5

The Subnet Validator has one advantage over the API sever.

When it validates a Subnet S1, S1 already exists.

API objects are created (persisted to etcd) sequentially.

If two conflicting subnets S1 and S2 are created, one (S2) is created last.

When the validator considers S2, S1 already exists.

Multi-object invariants pt. 6

Can’t retrieve existing subnets from informer cache:
• Two Subnet Validators might run at the same time.
• Informer caches are populated with no cross-object ordering guarantee.

Multi-object invariants pt. 7

Assume that:
• informer lists are used.
• two conflicting subnets S1 and S2 are created.
• two Subnet Validators V1 and V2 are running.

What might go wrong:
• V1 might validate S1 first without seeing S2.
• V2 might validate S2 first without seeing S1.

So…

Need to use live lists (against the API server): correct but less efficient.

IPAM pt. 1

IPAM controller:
• assigns virtual IPs to NAs (written into status.guestIP).
• singleton (best-effort).

Has informers on:
• Subnets.
• NAs.

Picks IPs from a per-subnet, in-memory cache of
available IPs.

IPAM pt. 2

Multiple instances could run at once => risk of
virtual IPs collisions!

So…

Local cache of available IPs not enough.

IPAM pt. 3

Solution: before assigning an IP, acquire a global lock on it.

Locking implemented as creation of an IPLock custom API object.

IPLock on IP X on VNI Y has name “Y-X”.

K8s forbids multiple API objects with same namespaced name and kind.

So…

Impossible to assign twice same IP: creation of 2nd IPLock fails.

Informers dynamic filtering pt. 1

Connection Agent (CA) on node N implements local NAs.

So… has informer on local NAs.

If NA with VNI X exists on node N, VNI X is “relevant” on N.

CA on N also needs to be notified of remote NAs with relevant VNIs.

Why? To ensure local NAs can send data to remote NAs.

NA A’s host NA B’s host

Informers dynamic filtering pt. 2

NA A Network Interface

Dest: B virtual MAC

L2 frame

ENCAP

Dest: B host IP

VXLAN packet

vSwitch

NA B Network Interface

Dest: B virtual MAC

L2 frame

DECAP

Dest: B host IP

VXLAN packet

vSwitch
Underlay Network

…
name: B
…
hostIP: …
virtualMAC: …
…

NA API object

Informers dynamic filtering pt. 3

Set of relevant VNIs on a node is dynamic.

Relevance of VNI X to Node N:

time1st NA of X
created on N

Last NA of X
deleted from N

Relevant IrrelevantIrrelevant

Informers dynamic filtering pt. 4

CA needs to be notified ONLY of remote NAs with relevant VNIs.

Informers support filtering.
Can use a single informer to filter on relevant VNIs? No: informer filtering is static.

How to synthesize dynamic filtering?

Solution: a dedicated informer for each relevant VNI.

Informers are started/stopped as VNIs become relevant/irrelevant.

Informers dynamic filtering pt. 5

A CA has potentially many informers on NAs.

Worker threads don’t know from which informer to retrieve NAs!

…

worker thread

Usual K8s controller KOS connection agent

Informer for
local NAs

Informer for
VNI X

Informer for
VNI Y

namespaced name

worker thread

namespaced name

Informer

Informers dynamic filtering pt. 6

Solution: map from namespaced name to informers where the NA is.

The map is updated by informer notification handlers.

…

worker thread

Informer for
local NAs

Informer for
VNI X

Informer for
VNI Y

namespaced name N
N

namespaced name

for VNI Y

informers
…

…

Informers dynamic filtering pt. 7

During transients, a NA can be in more than one informer, because:
• NA can be updated => VNI can change.
• No cross-informer ordering guarantee for notifications.

What does a worker thread do in these cases?

…

worker thread

Informer for
local NAs

Informer for
VNI X

Informer for
VNI Y

namespaced name N
N

namespaced name

for VNI X; for VNI Y

informers
…

…

Informers dynamic filtering pt. 8

If NA in more than one informer, worker gives up on processing it.

Only one informer stores up-to-date version of the NA.

Delete notifications for old versions will come => ambiguity will be solved.

Delete notifications enqueue NA’s namespaced name => NA is re-processed.

Conclusions

We built an SDN proof of concept with K8s API machinery and controller pattern.

The result is that it can be done with relatively small effort.

Some interesting challenges emerged:
• enforcing invariants across API objects of the same type (subnets validation).
• IP assignments while avoiding IP collisions and IP leaks.
• synthesis of dynamic filtering from informers for efficient delivery of

notifications.

We believe such challenges apply not just to KOS,
and required special care and creative solutions.

End

Thank you for your attention.

Q&A.

