r

KubeCon

X

CloudNativeCon
Europe 2020

Virluat

Building a Distributed API
Gateway with a Service Mesh
Rei Shimizu, Waseda University & Cynthia Coan, Tetrate

Outline /Agenda

What is Service Mesh?
De-Generalizing “AP| Gateway”
What is Envoy?
Using WASM in Envoy

Demo (WASM + Getenvoy)

Service Mesh 101 e

Europe 2020

Bring Standardization to Networks When Dealing With Services

® Infrastructure Layer designed to help service-to-service communication.
e Designed to help create a separation between the network, and the application logic.
o Can help enforce policies across the entire network, and let developers change without
overloading them in their support of their app.
® Applications have “Sidecars” that handle network communication.
o Instead of Application A talking to Application B directly, it tells the sidecar it wants to
talk to application b.
o The Application A sidecar then looks up it’s policies that have been configured including
route information, security, retry settings, etc. and routes the request.
o The Application B sidecar can then sees a request coming from Application A, and
validates security settings, etc., and routes to Application B.

“API Gateway” o

Europe 2020

® APl Gateway is one of those sets of words where everyone has a slightly different idea of
what an APl Gateway should actually provide, and is.
® APl Gateways are a similar idea to a service mesh but at the “Front Door”.
o APl Gateways are a configurable proxy that sit in front of your services.
o One of the core things they do very similarly to a service mesh is provide a
consistent entrypoint to your applications.
o Configuring Authentication, Routing, Rate-Limiting, protocol translation, etc. to all
the services behind the mesh.
e If the Service-Mesh and API Gateway are doing similar things why can’t we combine
these two things together?
o Rather than maintaining two separate systems that are both doing authentication,
routing, etc. why not just maintain one service that does this?
o There isn’t feature creep as we’re not adding two features, we’re merging things
doing the same thing into one place so it’s easier to reason about.

What is Envoy? - =

Europe 2020

Cloud-Native high-performance edge/middle/service proxy

® Proxy for Cloud Native era
e \Written in modern C++
e Have a possibility to achieve disentanglement between network and applications
o Dynamically configurable
o Extensibility through “Filters” at the L4, and L7 layers
o First-Class Logging, and Monitoring
o High-Performance due to lots of optimization, and threading work
® In this session, we use envoy as the sidecar in our service mesh

-r

KubeCon

Q|
L
CloudNativeCon
Europe 2020

Basic Architecture

¢t envoy
Read Filter Chain
Filter F||ter I~
))
— T our]
-
Filter Fllter a1
- @ @@ D —— J
HTTP Conn ; f Write Filter Chain [\\\
\}I:/IITTP Conn

Wasm extensibility for Envoy

Europe 2020

® Envoy now has support for extending it via WASM
O https://github.com/envoyproxy/envoy-wasm
e Official SDKs for C++/Rust.
o Unofficial SDKs are also available for Go/AssemblyScript (and you can make your
ownl!).
e Wasm filters can be delivered dynamically to Envoy with it’s “xDS” configuration system.
o This makes it possible to update WASM filters with zero downtime.
e Without WASM we’d have to build our extensions into the envoy binary with C++.
o This means it is impossible to dynamically update a filter in Envoy.
© You also have to start building your own Envoy.
m E.g. Istio-proxy is built on the top of envoy with custom filters.
o It should be mentioned lua is also an extension mechanism supported, but is not
full featured.

https://github.com/envoyproxy/envoy-wasm

. £ N
What is- Wasm? -t

Europe 2020

e WebAssembly is constructed to run on the browser, like
JavaScript.
o But, WebAssembly is much faster than JavaScript because
that is only simple binary format.
m That s strictly typed, so that it is easy to optimize.
m Not needed to parse. lightweight to deliver.
® |n addition to this, the runtime is sandboxed.
o Itis because Wasm is constructed to run on the browser.
o It won’t collapse the host environment.

Why Wasm? 2 i

Europe 2020

e Isolated Environment
o Wasm runtime won’t collapse the host environment.
o CPU usage and memory consumption can be limited.
o Sandboxed runtime can block malicious operations from host environment.
m It means that we can preserve sensitive informations, such as tokens.
® The number of supporting languages
o There is many languages that supports Wasm, such as C/C++, Rust, Go, TypeScript
etc...
e Portability
o We can separate between host environment (e.g. Envoy) and runtime (e.g. V8)
o It means that we can introduce Wasm extensibility to much proxies, such as nginx.

[N

What is proxy-wasm? s

Europe 2020

e WebAssembly for proxies
o It means that wasm extensibility is not only for Envoy, but also other proxies.
o Envoy is one of reference implementation of this.
o Apache Traffic Server(ATS) also has proxy-wasm implementation.

e \We can say that proxy-wasm is the set of specifications of ABI for proxies.

Basic Architecture o

Envoy Worker Thread (Silo)

Wasm VM

/
|
[

<

- ()
Filter / \
I
; = Wasm Binary
| o =1)
S 2
¢ &l o
S S| 3
Wasm 7 el S
o @ 7 e
Filter = S| &
> > =
= 3
; o 5
: o

Filter

Write wasm filter

onRequestHeaders() callback chain

You can write Wasm filter in C++ and Rust.
o These languages has official proxy-wasm SDK.
Proxy-wasm SDK has ABIs to be called from host, and

to call host fu

Wasm
Filter

||

nctions.

s\
?\equesx\,\eader
A.o"

2 -Proxy_on_request_headers
—_— -]

R

Wasm VM

\
KubeCon CloudNativeCon
Europe 2020

/ Wasm Binary

——| (func Sproxy_on_request_headers

{ proxy-w%sm-cpp-host }

~

/

<

4

Write wasm filter

o G A
A ™ 4 | N

® Write Wasm filter for JWT validation in

Rust.

o This code is powered by unofficial

(internal-manufactured) Rust
SDK.

o Officially supported to use Rust.

https://qithub.com/proxy-wasm/proxy-wasm-rust-sdk

e We can write with Host Functions to
call exposed Envoy functions.

KubeCon CloudNativeCon
Europe 2020

fn on_request_headers(&self, _headers: u32) -> FilterHeadersStatus {

// JWT restriction path matcher

let path_matcher = Regex::new(r"/.*/private$").unwrap();

let path :|get7requestwheaderk":path".tovstring()).unwrap().to_strlng()
if path_matcher.is_match(&path.as_str()) {

let data :|getfrequestfheaded("Authorization".to"strlng())
.unwrap()

.to_string();

let auth: Vec<&str> = data.split(" ").collect();
if auth.len() = 2 || auth[@] != "Bearer" || !validate(auth[1]) {
|sendwloca17respon54(
401,

"".to_string(),
"Invalid Token\n".to_string(),
&HashMap: :new(),
GrpcStatus: : 0k,

):

return FilterHeadersStatus::StopIteration;
1

FilterHeadersStatus::Continue

-------- Host Function

https://github.com/proxy-wasm/proxy-wasm-rust-sdk

Basic Architecture

Envoy Worker Thread (Silo)

/
|
[

A

Wasm VM
: T
Filter / \
1
: o Wasm Binary
: Q (=)
Q 2
Q 2| o
S S| 3
Wasm 7 £l S
. @ 5| €
Filter 2 Sa
> > =
= 3
; o &
: [oX

Filter

o SR O
A ™ 4 | N

KubeCon CloudNativeCon
Europe 2020

"name": "envoy.filters.http.wasm",

e Wasm code is executed on Wasm S——. S
runtlme Wh|Ch runs on per the Envoy "@type": "type.googleapis.com/envoy.extensions.filters.http.wasm.v3.wasm",
’ "config": {

Worker Thread (Silo). oot id": "y roo i
e We can use V8 and WAVM on Envoy. R &

"runtime":|"envoy.wasm.runtime.vs",
e Switching wasm runtime with bootstrap -~
(:()r]fig;. "filename": "./config/lds/envoy_wasm_demo.wasm"
L
:,

QN

How to extend our Service Mesh with Wasm? ¥ ..

Europe 2020

e We can specify wasm codes from Control
Plane via LDS.
o | developed a simple control plane [Storage [ocp }

for delivering wasm code to all of
data planes for this demo, called wasm code
pcp' wasm code

o Assumed to share docker volume in

running service containers.

o NOT production ready.

Envoy

Service

https://qithub.com/Shikugawa/pcp

https://github.com/Shikugawa/pcp

o S 4
| N |

GetEnvoy A e

Europe 2020

O GetEnvoy

® GetEnvoy is a CLI tool developed by Tetrate.
® Provide the easiest way to get envoy binary.
o Itis very useful to verify your envoy environment.

getenvoy run standard:1.15.0 -- --config-path /path/to/config.yaml|

£ N S
(AN |

Provide AuthN layer with Wasm Filter et e

Europe 2020

e Intoday’s demo, we provide the APl Gateway
ability via envoy wasm extensibility.
o By applying AuthN layer to services which
constructed on the top of Service Mesh.
o Apply Basic AuthN and JWT validation filter
written in Rust and internal-manufactured
Rust SDK.
e Front envoy and service envoy is powered by
GetEnvoy.

L@ envoy

L@ envoy

('@ envoy «

Control Plane

(,@ envoy

| 5 E‘
'L atqveCon

Tk 5 g -—_ % .

[N

GetEnvoy Wasm A e

Europe 2020

® GetEnvoy has also great abilities to accelerate our WebAssembly filter development.
o Boilerplate with internal-manufactured proxy-wasm SDK
m Currently it supports only Rust.
m Theinternal-manufactured proxy-wasm SDK is based on official proxy-wasm
SDK, with some conveniences.
o Build and test them with docker container.
o Run WebAssembly filter with envoy by the easiest way.

8 [

KubeCon CloudNativeCon
Europe 2020

W»f AL P af by 3 ?’\?P”a]

f‘;ﬁ;f‘m&:?éﬂf{\wwf?ﬁ

