
Building A distributed API Gateway
with a Service Mesh

Outline / Agenda

De-Generalizing “API Gateway”

What is Service Mesh?

What is Envoy?

Using WASM in Envoy

Demo (WASM + Getenvoy)

Service Mesh 101

● Infrastructure Layer designed to help service-to-service communication.
● Designed to help create a separation between the network, and the application logic.

○ Can help enforce policies across the entire network, and let developers change without
overloading them in their support of their app.

● Applications have “Sidecars” that handle network communication.
○ Instead of Application A talking to Application B directly, it tells the sidecar it wants to

talk to application b.
○ The Application A sidecar then looks up it’s policies that have been configured including

route information, security, retry settings, etc. and routes the request.
○ The Application B sidecar can then sees a request coming from Application A, and

validates security settings, etc., and routes to Application B.

Bring Standardization to Networks When Dealing With Services

“API Gateway”
● API Gateway is one of those sets of words where everyone has a slightly different idea of

what an API Gateway should actually provide, and is.
● API Gateways are a similar idea to a service mesh but at the “Front Door”.

○ API Gateways are a configurable proxy that sit in front of your services.
○ One of the core things they do very similarly to a service mesh is provide a

consistent entrypoint to your applications.
○ Configuring Authentication, Routing, Rate-Limiting, protocol translation, etc. to all

the services behind the mesh.
● If the Service-Mesh and API Gateway are doing similar things why can’t we combine

these two things together?
○ Rather than maintaining two separate systems that are both doing authentication,

routing, etc. why not just maintain one service that does this?
○ There isn’t feature creep as we’re not adding two features, we’re merging things

doing the same thing into one place so it’s easier to reason about.

What is Envoy?

Cloud-Native high-performance edge/middle/service proxy

● Proxy for Cloud Native era
● Written in modern C++
● Have a possibility to achieve disentanglement between network and applications

○ Dynamically configurable
○ Extensibility through “Filters” at the L4, and L7 layers
○ First-Class Logging, and Monitoring
○ High-Performance due to lots of optimization, and threading work

● In this session, we use envoy as the sidecar in our service mesh

Basic Architecture

Listener

Filter Filter

Router

Upstream

Filter Filter

Write Filter Chain

Read Filter Chain

HTTP Conn
HTTP Conn

Wasm extensibility for Envoy
● Envoy now has support for extending it via WASM

○ https://github.com/envoyproxy/envoy-wasm
● Official SDKs for C++/Rust.

○ Unofficial SDKs are also available for Go/AssemblyScript (and you can make your
own!).

● Wasm filters can be delivered dynamically to Envoy with it’s “xDS” configuration system.
○ This makes it possible to update WASM filters with zero downtime.

● Without WASM we’d have to build our extensions into the envoy binary with C++.
○ This means it is impossible to dynamically update a filter in Envoy.
○ You also have to start building your own Envoy.

■ E.g. Istio-proxy is built on the top of envoy with custom filters.
○ It should be mentioned lua is also an extension mechanism supported, but is not

full featured.

https://github.com/envoyproxy/envoy-wasm

 What is Wasm?

● WebAssembly is constructed to run on the browser, like
JavaScript.
○ But, WebAssembly is much faster than JavaScript because

that is only simple binary format.
■ That is strictly typed, so that it is easy to optimize.
■ Not needed to parse. lightweight to deliver.

● In addition to this, the runtime is sandboxed.
○ It is because Wasm is constructed to run on the browser.
○ It won’t collapse the host environment.

 Why Wasm?
● Isolated Environment

○ Wasm runtime won’t collapse the host environment.
○ CPU usage and memory consumption can be limited.
○ Sandboxed runtime can block malicious operations from host environment.

■ It means that we can preserve sensitive informations, such as tokens.
● The number of supporting languages

○ There is many languages that supports Wasm, such as C/C++, Rust, Go, TypeScript
etc…

● Portability
○ We can separate between host environment (e.g. Envoy) and runtime (e.g. V8)
○ It means that we can introduce Wasm extensibility to much proxies, such as nginx.

What is proxy-wasm?

● WebAssembly for proxies
○ It means that wasm extensibility is not only for Envoy, but also other proxies.
○ Envoy is one of reference implementation of this.
○ Apache Traffic Server(ATS) also has proxy-wasm implementation.

● We can say that proxy-wasm is the set of specifications of ABI for proxies.

Basic Architecture
Envoy Worker Thread (Silo)

Filter

Wasm
Filter

Filter

p
ro

xy
-w

as
m

-c
p

p
-h

o
st

Wasm VM

Wasm Binary

p
ro

xy
-w

as
m

-c
p

p
-s

d
k

W
as

m
 C

o
d

e

Write wasm filter
● You can write Wasm filter in C++ and Rust.

○ These languages has official proxy-wasm SDK.
● Proxy-wasm SDK has ABIs to be called from host, and

to call host functions.

Wasm Binary

(func $proxy_on_request_headers

)

Wasm
Filter

pr
ox

y-
w

as
m

-c
pp

-h
os

t

1. onRequestHeaders()

o
n

R
eq

u
es

tH
ea

d
er

s(
)

ca
llb

ac
k

ch
ai

n

Wasm VM

2.proxy_on_request_headers

Filter

Filter

Write wasm filter
● Write Wasm filter for JWT validation in

Rust.
○ This code is powered by unofficial

(internal-manufactured) Rust
SDK.

○ Officially supported to use Rust.
https://github.com/proxy-wasm/proxy-wasm-rust-sdk

Host Function

● We can write with Host Functions to
call exposed Envoy functions.

https://github.com/proxy-wasm/proxy-wasm-rust-sdk

Basic Architecture
Envoy Worker Thread (Silo)

Filter

Wasm
Filter

Filter

p
ro

xy
-w

as
m

-c
p

p
-h

o
st

Wasm VM

Wasm Binary

p
ro

xy
-w

as
m

-c
p

p
-s

d
k

W
as

m
 C

o
d

e

Wasm VM

● Wasm code is executed on Wasm
runtime, which runs on per the Envoy
Worker Thread (Silo).

● We can use V8 and WAVM on Envoy.
● Switching wasm runtime with bootstrap

config.

● We can specify wasm codes from Control
Plane via LDS.
○ I developed a simple control plane

for delivering wasm code to all of
data planes for this demo, called
pcp.

○ Assumed to share docker volume in
running service containers.

○ NOT production ready.

How to extend our Service Mesh with Wasm?

Envoy

Service

Storage pcp

wasm code

Envoy

Service

wasm code

https://github.com/Shikugawa/pcp

https://github.com/Shikugawa/pcp

GetEnvoy

● GetEnvoy is a CLI tool developed by Tetrate.
● Provide the easiest way to get envoy binary.

○ It is very useful to verify your envoy environment.

getenvoy run standard:1.15.0 -- --config-path /path/to/config.yaml

Provide AuthN layer with Wasm Filter

● In today’s demo, we provide the API Gateway
ability via envoy wasm extensibility.
○ By applying AuthN layer to services which

constructed on the top of Service Mesh.
○ Apply Basic AuthN and JWT validation filter

written in Rust and internal-manufactured
Rust SDK.

● Front envoy and service envoy is powered by
GetEnvoy.

Demo

GetEnvoy Wasm

● GetEnvoy has also great abilities to accelerate our WebAssembly filter development.
○ Boilerplate with internal-manufactured proxy-wasm SDK

■ Currently it supports only Rust.
■ The internal-manufactured proxy-wasm SDK is based on official proxy-wasm

SDK, with some conveniences.
○ Build and test them with docker container.
○ Run WebAssembly filter with envoy by the easiest way.

