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Service Mesh 101

● Infrastructure Layer designed to help service-to-service communication.
● Designed to help create a separation between the network, and the application logic.

○ Can help enforce policies across the entire network, and let developers change without 
overloading them in their support of their app.

● Applications have “Sidecars” that handle network communication.
○ Instead of Application A talking to Application B directly, it tells the sidecar it wants to 

talk to application b.
○ The Application A sidecar then looks up it’s policies that have been configured including 

route information, security, retry settings, etc. and routes the request.
○ The Application B sidecar can then sees a request coming from Application A, and 

validates security settings, etc., and routes to Application B.

Bring Standardization to Networks When Dealing With Services



“API Gateway”
● API Gateway is one of those sets of words where everyone has a slightly different idea of 

what an API Gateway should actually provide, and is.
● API Gateways are a similar idea to a service mesh but at the “Front Door”.

○ API Gateways are a configurable proxy that sit in front of your services.
○ One of the core things they do very similarly to a service mesh is provide a 

consistent entrypoint to your applications.
○ Configuring Authentication, Routing, Rate-Limiting, protocol translation, etc. to all 

the services behind the mesh.
● If the Service-Mesh and API Gateway are doing similar things why can’t we combine 

these two things together?
○ Rather than maintaining two separate systems that are both doing authentication, 

routing, etc. why not just maintain one service that does this?
○ There isn’t feature creep as we’re not adding two features, we’re merging things 

doing the same thing into one place so it’s easier to reason about.



What is Envoy?

Cloud-Native high-performance edge/middle/service proxy

● Proxy for Cloud Native era
● Written in modern C++
● Have a possibility to achieve disentanglement between network and applications

○ Dynamically configurable
○ Extensibility through “Filters” at the L4, and L7 layers
○ First-Class Logging, and Monitoring
○ High-Performance due to lots of optimization, and threading work

● In this session, we use envoy as the sidecar in our service mesh
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Wasm extensibility for Envoy
● Envoy now has support for extending it via WASM

○ https://github.com/envoyproxy/envoy-wasm
● Official SDKs for C++/Rust.

○ Unofficial SDKs are also available for Go/AssemblyScript (and you can make your 
own!).

● Wasm filters can be delivered dynamically to Envoy with it’s “xDS” configuration system.
○ This makes it possible to update WASM filters with zero downtime.

● Without WASM we’d have to build our extensions into the envoy binary with C++.
○ This means it is impossible to dynamically update a filter in Envoy.
○ You also have to start building your own Envoy.

■ E.g. Istio-proxy is built on the top of envoy with custom filters.
○ It should be mentioned lua is also an extension mechanism supported, but is not 

full featured.

https://github.com/envoyproxy/envoy-wasm


 What is Wasm?

● WebAssembly is constructed to run on the browser, like 
JavaScript.
○ But, WebAssembly is much faster than JavaScript because 

that is only simple binary format.
■ That is strictly typed, so that it is easy to optimize.
■ Not needed to parse. lightweight to deliver.

● In addition to this, the runtime is sandboxed.
○ It is because Wasm is constructed to run on the browser.
○ It won’t collapse the host environment.



 Why Wasm?
● Isolated Environment

○ Wasm runtime won’t collapse the host environment.
○ CPU usage and memory consumption can be limited.
○ Sandboxed runtime can block malicious operations from host environment.

■ It means that we can preserve sensitive informations, such as tokens.
● The number of supporting languages

○ There is many languages that supports Wasm, such as C/C++, Rust, Go, TypeScript 
etc…

● Portability
○ We can separate between host environment (e.g. Envoy) and runtime (e.g. V8)
○ It means that we can introduce Wasm extensibility to much proxies, such as nginx.



What is proxy-wasm?

● WebAssembly for proxies
○ It means that wasm extensibility is not only for Envoy, but also other proxies.
○ Envoy is one of reference implementation of this.
○ Apache Traffic Server(ATS) also has proxy-wasm implementation.

● We can say that proxy-wasm is the set of specifications of ABI for proxies.



Basic Architecture
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Write wasm filter
● You can write Wasm filter in C++ and Rust.

○ These languages has official proxy-wasm SDK.
● Proxy-wasm SDK has ABIs to be called from host, and 

to call host functions.
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Write wasm filter 
● Write Wasm filter for JWT validation in 

Rust.
○ This code is powered by unofficial 

(internal-manufactured) Rust 
SDK.

○ Officially supported to use Rust.
https://github.com/proxy-wasm/proxy-wasm-rust-sdk

Host Function

● We can write with Host Functions to 
call exposed Envoy functions.

https://github.com/proxy-wasm/proxy-wasm-rust-sdk


Basic Architecture
Envoy Worker Thread (Silo)
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Wasm VM

● Wasm code is executed on Wasm 
runtime, which runs on per the Envoy 
Worker Thread (Silo).

● We can use V8 and WAVM on Envoy.
● Switching wasm runtime with bootstrap 

config.



● We can specify wasm codes from Control 
Plane via LDS.
○ I developed a simple control plane 

for delivering wasm code to all of 
data planes for this demo, called 
pcp.

○ Assumed to share docker volume in 
running service containers.

○ NOT production ready.

How to extend our Service Mesh with Wasm?
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https://github.com/Shikugawa/pcp

https://github.com/Shikugawa/pcp


GetEnvoy

● GetEnvoy is a CLI tool developed by Tetrate.
● Provide the easiest way to get envoy binary.

○ It is very useful to verify your envoy environment.

getenvoy run standard:1.15.0 -- --config-path /path/to/config.yaml



Provide AuthN layer with Wasm Filter

● In today’s demo, we provide the API Gateway 
ability via envoy wasm extensibility.
○ By applying AuthN layer to services which 

constructed on the top of Service Mesh.
○ Apply Basic AuthN and JWT validation filter 

written in Rust and internal-manufactured 
Rust SDK.

● Front envoy and service envoy is powered by 
GetEnvoy.



Demo



GetEnvoy Wasm

● GetEnvoy has also great abilities to accelerate our WebAssembly filter development.
○ Boilerplate with internal-manufactured proxy-wasm SDK

■ Currently it supports only Rust.
■ The internal-manufactured proxy-wasm SDK is based on official proxy-wasm 

SDK, with some conveniences.
○ Build and test them with docker container.
○ Run WebAssembly filter with envoy by the easiest way.




