
Björn “Beorn” Rabenstein

Better Histograms
for Prometheus

1. Secret History of Prometheus Histograms
FOSDEM, Brussels, Belgium.

https://fosdem.org/2020/schedule/event/histograms/

2. Prometheus Histograms – Past, Present, and Future
PromCon, Munich, Germany.

https://promcon.io/2019-munich/talks/prometheus-histograms-past-present-and-future/

3. Better Histograms For Prometheus
KubeCon EU, online, anywhere.

That’s now!

This is a trilogy:

| 2

https://fosdem.org/2020/schedule/event/histograms/
https://promcon.io/2019-munich/talks/prometheus-histograms-past-present-and-future/

https://grafana.com/blog/2020/05/05/how-isolation-improves-queries-in-prometheus-2.17/

https://grafana.com/blog/2020/05/05/how-isolation-improves-queries-in-prometheus-2.17/

“What percentage of requests
in the last hour got a
response in 100ms or less?”

By Apdex - Apdex Web site, Fair use,
https://en.wikipedia.org/w/index.php?curid=8994240

“How many HTTP responses
larger than 4kiB were served
on 2019-11-03 between 02:30
and 02:45?”

Mathematically correct aggregation.

High frequency sampling feasible.

“What percentage of requests
in the last hour got a
response in 100ms or less?”

By Apdex - Apdex Web site, Fair use,
https://en.wikipedia.org/w/index.php?curid=8994240

“How many HTTP responses
larger than 4kiB were served
on 2019-11-03 between 02:30
and 02:45?”

 * If suitable buckets defined.

*

*

*

Mathematically correct aggregation.

*

High frequency sampling feasible.

histogram_quantile(0.99, sum(rate(rpc_duration_seconds_bucket[5m])) by (le))

histogram_quantile(0.99, sum(rate(rpc_duration_seconds_bucket[5m])) by (le))

● Accuracy depends on bucket layout.
● Bucketing scheme must be compatible…

○ …across the aggregated metrics.
○ …across the range of the rate calculation.

● Lack of ingestion isolation can wreak havoc.

httpRequests = prometheus.NewCounterVec(
prometheus.CounterOpts{

Name: "http_requests_total",
Help: "HTTP requests partitioned by status code.",

},
[]string{"status"},

)

httpRequestDurations = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "http_durations_seconds",
Help: "HTTP latency distribution.",
Buckets: []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10},

})

1. Everything that works well now should continue to work well.

2. I never want to configure buckets again.

3. All histograms should always be aggregatable with each
other, across time and space.

4. I want accurate quantile and percentage estimations across
the whole range of observations.

5. I want all of that at a lower cost than current histograms so
that I can finally partition histograms at will.

Wishlist

| 11

HdrHistogram: http://hdrhistogram.org

Circonus’s Circllhist: https://arxiv.org/abs/2001.06561

Datadog’s DDSketch: https://arxiv.org/abs/1908.10693

http://hdrhistogram.org
https://github.com/circonus-labs/libcircllhist/
https://arxiv.org/abs/1908.10693

t0m 2m 4m1m 3m

in
st

an
ce

s
Histogram by DanielPenfield - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=9401898

t0m 2m 4m1m 3m

in
st

an
ce

s
Histogram by DanielPenfield - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=9401898

t0m 2m 4m1m 3m

in
st

an
ce

s
Histogram by DanielPenfield - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=9401898

t0m 2m 4m1m 3m

in
st

an
ce

s
Histogram by DanielPenfield - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=9401898

t0m 2m 4m1m 3m

nu
m

be
r o

f p
op

ul
at

ed
 b

uc
ke

ts

by Kierano - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/wiki/File:Cumulative_vs_normal_histogram.svg

https://commons.wikimedia.org/wiki/User:Kierano

value0.215 100.1 0.464

bu
ck

et
 c

ou
nt

1 2.15 4.64 21.5 …

resolution = 3 (in practice between 20 and 100)

zero bucket
(in practice more like 10-128)

empty bucket
continue

into
“infinity”…

from Grafana Labs’ Cortex cluster

Real production data

| 20

Dataset Observations (duration) Buckets (res=20) Buckets (res=100)

Ingester 1,876,573 (2m) 78 (2 spans) 355 (12 spans)

Querier 668,925 (1h) 112 (1 span) 535 (15 spans)

value0.215 100.1 0.464

bu
ck

et
 c

ou
nt

1 2.15 4.64 21.5 …

ZERO
–2

–1

0
2

3

4

span: offset -2, length 3 span: offset 1, length 3

Δ

Δ
Δ

Δ Δ

Δ

from Grafana Labs’Cortex cluster

Real production data

| 22

Dataset Buckets (res=20) proto size Buckets (res=100) proto size

Ingester 78 (2 spans) 244 bytes 355 (12 spans) 898 bytes

Querier 112 (1 span) 317 bytes 535 (15 spans) 1294 bytes

HELP rpc_durations_histogram_seconds RPC latency distributions.
TYPE rpc_durations_histogram_seconds histogram
rpc_durations_histogram_seconds_bucket{le="-0.00099"} 0
rpc_durations_histogram_seconds_bucket{le="-0.00089"} 0
rpc_durations_histogram_seconds_bucket{le="-0.0007899999999999999"} 0
rpc_durations_histogram_seconds_bucket{le="-0.0006899999999999999"} 2
rpc_durations_histogram_seconds_bucket{le="-0.0005899999999999998"} 13
rpc_durations_histogram_seconds_bucket{le="-0.0004899999999999998"} 43
rpc_durations_histogram_seconds_bucket{le="-0.0003899999999999998"} 186
rpc_durations_histogram_seconds_bucket{le="-0.0002899999999999998"} 554
rpc_durations_histogram_seconds_bucket{le="-0.0001899999999999998"} 1305
rpc_durations_histogram_seconds_bucket{le="-8.999999999999979e-05"} 2437
rpc_durations_histogram_seconds_bucket{le="1.0000000000000216e-05"} 3893
rpc_durations_histogram_seconds_bucket{le="0.00011000000000000022"} 5383
rpc_durations_histogram_seconds_bucket{le="0.00021000000000000023"} 6572
rpc_durations_histogram_seconds_bucket{le="0.0003100000000000002"} 7321
rpc_durations_histogram_seconds_bucket{le="0.0004100000000000002"} 7701
rpc_durations_histogram_seconds_bucket{le="0.0005100000000000003"} 7842
rpc_durations_histogram_seconds_bucket{le="0.0006100000000000003"} 7880
rpc_durations_histogram_seconds_bucket{le="0.0007100000000000003"} 7897
rpc_durations_histogram_seconds_bucket{le="0.0008100000000000004"} 7897
rpc_durations_histogram_seconds_bucket{le="0.0009100000000000004"} 7897
rpc_durations_histogram_seconds_bucket{le="+Inf"} 7897
rpc_durations_histogram_seconds_sum 0.10043870352301096
rpc_durations_histogram_seconds_count 7897

plaintext 1676 bytes

protobuf 357 bytes

● One time series per histogram, not per bucket.

● A sample value is now a sequence of bucket deltas, not a float.

● Double-delta encode them like timestamps, “triple-delta”.

● Adjusted Gorilla-style “varbit” encoding, again like timestamps.

Storage ideas

| 24

Space needed to store the triple-deltas “varbit”-encoded

Simulated scrapes

| 25

Dataset Scrapes bytes per histogram
(per bucket) [res=20]

bytes per histogram
(per bucket) [res=100]

Ingester 80 50 (0.65) 180 (0.51)

Querier 240 70 (0.60) 250 (0.45)

Querying? 🤔
How can we know it will work?

Because others have done similar things already, e.g. FiloDB
https://www.slideshare.net/EvanChan2/histograms-at-scale-monitorama-2019

(slide 23! ❤)

.

https://github.com/beorn7/talks
https://www.slideshare.net/EvanChan2/histograms-at-scale-monitorama-2019

1. Everything that works well now should continue to work well.

2. I never want to configure buckets again.

3. All histograms should always be aggregatable with each
other, across time and space.

4. I want accurate quantile and percentage estimations across
the whole range of observations.

5. I want all of that at a lower cost than current histograms so
that I can finally partition histograms at will.

Wishlist

| 27

1. Everything that works well now should continue to work well.

2. I never want to configure buckets again.

3. All histograms should always be aggregatable with each
other, across time and space.

4. I want accurate quantile and percentage estimations across
the whole range of observations.

5. I want all of that at a lower cost than current histograms so
that I can finally partition histograms at will.

Wishlist

| 28

Percentage estimations

SLO: Respond to 99% of queries in 150ms.

Bucket boundaries (resolution 100):
147.9ms < x ≤ 151.4ms

1. Everything that works well now should continue to work well.

2. I never want to configure buckets again.

3. All histograms should always be aggregatable with each
other, across time and space.

4. I want accurate quantile and percentage estimations across
the whole range of observations.

5. I want all of that at a lower cost than current histograms so
that I can finally partition histograms at will.

Wishlist

| 29

his = promauto.NewHistogram(prometheus.HistogramOpts{
Name: "histogram_experiment",
Help: "Test histogram.",
SparseBucketsResolution: 42,
SparseBucketsZeroThreshold: 1e-128,

})

1. Everything that works well now should continue to work well.

2. I never want to configure buckets again.

3. All histograms should always be aggregatable with each
other, across time and space.

4. I want accurate quantile and percentage estimations across
the whole range of observations.

5. I want all of that at a lower cost than current histograms so
that I can finally partition histograms at will.

Wishlist

| 30

1. Everything that works well now should continue to work well.

2. I never want to configure buckets again.

3. All histograms should always be aggregatable with each
other, across time and space.

4. I want accurate quantile and percentage estimations across
the whole range of observations.

5. I want all of that at a lower cost than current histograms so
that I can finally partition histograms at will.

Wishlist

| 31

1. Everything that works well now should continue to work well.

2. I never want to configure buckets again.

3. All histograms should always be aggregatable with each
other, across time and space.

4. I want accurate quantile and percentage estimations across
the whole range of observations.

5. I want all of that at a lower cost than current histograms so
that I can finally partition histograms at will.

Wishlist

| 32

Very rough results from my experiments and PoC code:
https://github.com/beorn7/histogram_experiments

“Proper” design doc / RFC:
Watch prometheus-developers@googlegroups.com

https://github.com/beorn7/talks

beorn@grafana.com

.

https://github.com/beorn7/histogram_experiments
https://github.com/beorn7/talks

