
1

Sébastien Guilloux (@_sebgl)
KubeCon North America 2019 (San Diego)

Writing a Kubernetes
Operator: the Hard Parts

2

3

Kubernetes Operators
in a nutshell

4

Operators in a nutshell

apiserver

Custom Resource
Definition (CRD)

CRDs apiVersion:
elasticsearch.k8s.elastic.co/v1beta1
kind: Elasticsearch
metadata:
 name: elasticsearch-sample
spec:
 version: 7.4.0
 nodeSets:
 - name: master-nodes
 count: 3
 config:

 node.master: true
 - name: data-nodes
 count: 2
 config:

 node.data: true

5

Operators in a nutshell

operator

apiserver

watch
create
update
delete

External system

interact

Reconcile!
Get resource spec
Reconcile Services, Secrets, Pods, etc.
(maybe) Interact with an external system

New event
A watched resource was created/updated/deleted

Sequential steps
Return early
Over and over again

Custom Resource
Definition (CRD)

Reconciliation loop

66

Tools & libs

7

The Hard Parts
(Well, some of them)

8

The operator lives in the past

The apiserver client uses a cached reader (by default)

Assume you’re one step behind reality

// retrieve Pods
client.List(&pods) // [podA, podB]
// we miss podC, create it
client.Create(&podC)
// retrieve Pods again
client.List(&pods) // [podA, podB]

9

The operator lives in the past

The Infinite Pod Creation Loop
Pod missing? Create one.
Pod missing? Create one.

So what? Examples from real life

The Double Rolling Upgrade Reaction
Need to upgrade? Delete + Recreate Pods.
Need to upgrade? Delete + Recreate already upgraded Pods.

The Split Brain Situation
3 nodes? Quorum=2.
Add a 4th node. Quorum=3.
3 nodes? Quorum=2.

10

The operator lives in the past
What can we do?

Optimistic concurrency is good enough for most cases

> kubectl get pod my-pod -o json | jq .metadata
{
 “namespace”: “default”,
 “name”: “my-pod”,
 “uuid”: “6210565b-f985-11e9-8ca3-42010a8400bb”,
 “resourceVersion”: “3721702”
}

conflict on
creation

conflict on
update

11

The operator lives in the past
What can we do?

err := client.Delete(&pod, clientpkg.Preconditions{
 UID: &pod.UID,
 ResourceVersion: &pod.ResourceVersion,
})
if err != nil {
 return err
}

conflict on
deletion

Optimistic concurrency is good enough for most cases

12

The operator lives in the past

Sometimes this is not enough
Especially when dealing with stateful workloads

What if we need some guarantees?

13

The operator lives in the past
What if we need some guarantees?

if !expectations.Satisfied() {
 // cache is not up-to-date yet
 return
}
err := client.Create(&pod)
// expect the Pod to be created
expectations.ExpectCreation(pod)

in-memory expectations

In the ReplicaSet controller github.com/kubernetes/kubernetes/blob/master/pkg/controller/controller_utils.go

In ECK github.com/elastic/cloud-on-k8s/tree/master/pkg/controller/common/expectations

https://github.com/elastic/cloud-on-k8s/tree/master/pkg/controller/common/expectations

14

The operator lives in the past

Use deterministic naming

Always assume a stale cache

The entire reconciliation should be idempotent

Best practices

15

Idempotent reconciliation
An example

if !exists(statefulSet) {
 err := c.Create(statefulSet)
 err := c.Create(headlessSvc)
}

The operator may crash here

Or return an error here

headlessSvc will never be created

16

if !exists(statefulSet) {
 err := c.Create(statefulSet)
 err := c.Create(headlessSvc)
}

if !exists(statefulSet) {
 err := c.Create(headlessSvc)
 err := c.Create(statefulSet)
}

An example

Reorder operations

Idempotent reconciliation

17

if !exists(statefulSet) {
 err := c.Create(statefulSet)
 err := c.Create(headlessSvc)
}

if !exists(statefulSet) {
 err := c.Create(headlessSvc)
 err := c.Create(statefulSet)
}

if !exists(statefulSet) {
 err := c.Create(statefulSet)
}
if !exists(headlessSvc) {
 err := c.Create(headlessSvc)
}

An example

Decouple reconciliations

Idempotent reconciliation

18

Reconciling resources

1919

Reconciling resources

expected actual

compare

reconcile

if !reflect.DeepEqual(expected, actual) {
 // need to update
 // ...
}

The deep way

Not a great fit for:
● metadata
● defaulted values

2020

Defaulted values

apiVersion: v1
kind: Pod
metadata:
 name: mypod
spec:
 containers:
 - name: busybox
 image: busybox

apiVersion: v1
kind: Pod
metadata:
 creationTimestamp: 2019-11-13T10:04:46Z
 namespace: default
 name: mypod
 uid: 052fa624-05fd-11ea-9ab1-42010a84001d
spec:
 containers:
 - name: busybox
 image: busybox
 imagePullPolicy: Always
 env:
 - name: KUBERNETES_PORT_443_TCP_ADDR
 value: c-111-dns-5e14.hcp.westus2.azmk8s.io
 resources:
 requests:
 cpu: 100m
 dnsPolicy: ClusterFirst
 securityContext: {}

2. Get Pod1. Create Pod

2121

Reconciling resources

expected actual

compare

reconcile

if sameLabels(expected, actual) &&
 sameAnnotations(expected, actual) &&
 sameReplicas(expected, actual) &&
 sameResourcesLimits(expected, actual) &&
 sameEnvVars(expected, actual) && ...

The hard way

Not a great fit for:
● unit tests
● PR reviewer brain
● real life
● defaulted values

2222

Reconciling resources

expected actual

compare

reconcile

// annotate object with its hash
hash := HashObject(expected)
expected.Annotations[ResourceHash] = hash
// compare expected vs. actual hash
actualHash := actual.Annotations[ResourceHash]
if actualHash != hash {
 // need to update
}

The smart way

Actual hash was built at creation time,
hence does not include defaulted fields

github.com/kubernetes/kubernetes/tree/master/pkg/util/hash
github.com/elastic/cloud-on-k8s/tree/master/pkg/controller/common/hash

https://github.com/kubernetes/kubernetes/tree/master/pkg/util/hash
https://github.com/elastic/cloud-on-k8s/tree/master/pkg/controller/common/hash

23

apiVersion: elasticsearch.k8s.elastic.co/v1beta1
kind: Elasticsearch
metadata:
 name: elasticsearch-sample
spec:
 version: 7.4.0
 nodeSets:
 - name: default
 count: 1
 podTemplate:
 metadata:
 labels: {“foo”: “bar”}
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: environment
 operator: In
 values: [“e2e”, “production”]
 containers:

 - name: elasticsearch
 env:

 - name: ES_JAVA_OPTS
 value: “-Xms2g -Xmx4g”

Empower users
But provide good defaults

optional podTemplate

24

StatefulSets
A few things to know about

2525

StatefulSets
A few things to know about

No volume resize
KEP in progress

2626

StatefulSets
A few things to know about

No volume resize
There are workarounds

2727

StatefulSets
A few things to know about

Scheduling conflicts
Pod vs. PV

kind: StorageClass
metadata:
 name: my-storage-class
volumeBindingMode: WaitForFirstConsumer

2828

StatefulSets
A few things to know about

StatefulSet upgrade:

1. Delete Pod
2. Recreate Pod
3. No resources available

1.5 Another Pod scheduled
Scheduling conflicts
Local Volumes vs. resources

2929

StatefulSets
A few things to know about

Stateful workloads
UpdateStrategy
Pick one

RollingUpdate

RollingUpdate.Partition

OnDelete

3030

StatefulSets
A few things to know about

You don’t have to use StatefulSets.

You can manage Pods and PVCs directly.

3131

StatefulSets
A few things to know about

You don’t have to use StatefulSets.

You can manage Pods and PVCs directly.

We tried.

32

Sébastien Guilloux
KubeCon North America 2019 (San Diego)

Writing a Kubernetes
Operator: the Hard Parts

33

Backup slides

34

Testing

● Unit test as much as possible
○ Fake client helps with k8s interactions

● Unit tests for the entire reconciliation are hard
○ Too many code paths to visit & things to mock

● Kubebuilder integration tests
○ Local apiserver + etcd process

○ Our CI had a hard time running ITs in parallel

How do you test that monster you ended up with?

35

Testing

● End-to-end tests
○ 1. Spawn a k8s cluster
○ 2. Deploy the operator
○ 3. Run tests

■ Create an Elasticsearch cluster
■ Verify it’s available, with the expected spec
■ Mutate the cluster
■ Verify it eventually has the expected spec
■ Continuously ensure no downtime nor data loss during the mutation

How do you test that monster you ended up with?

36

Testing
Multidimensional E2E test matrix

37

Namespace management

● One operator for the entire cluster
● One operator per namespace
● One operator for [namespaceA, namespaceB]

○ Thanks controller-runtime 0.2!
○ Need tooling for RBAC generation

Full flexibility

