
Walls Within Walls:
What if your attacker
knows parkour?

Greg Castle
GKE Security Tech Lead
Twitter: @mrgcastle
Github: @destijl
Google

Tim Allclair
GKE Security Engineer
Twitter: @tallclair
Github: @tallclair
Google

North America 2019

Node
Isolation

Setup

A Tale of Two
Containers

Workload
Steering Attack

Node vs.
Pod

Isolation

Takeaways

A Tale of Two
Containers

A Niche Webhosting Company

“Webhosting for parkour gyms”

A Tale of Two Containers

Pod

Payments

Prod payments
processing

Customer website for
“maximum-uptime”

parkour gym

Pod

maximum-uptime

Node

Pod

Payments

Do Nothing
Sensitive containers
scheduled next to
untrusted workloads.

Pod

maximum-uptime

Threat Model

Node
Expect low security
system to be
compromised and
escape container. Pod

Payments

Pod

maximum-uptime

Are container breakouts a thing?

• Yes, see runc CVE-2019-5736

• Bugs are inevitable

• Not enough to separate untrusted workloads from
high value workloads

App-Specific Hardening?

Seccomp, app-armor, selinux:

• Difficult to learn and maintain

• Hard to fully exercise applications in test

• Customer website needs may vary

• Beaten by Dirty COW-like vulnerability (CVE-2016-5195)

Separate
Nodes
Payments on different
nodes to customer
workloads

Non-security benefits:

- Separate failure
domains

- Resource isolation
(disk iops, network)

Node

Node

Pod

Payments

Pod

maximum-uptime

But is it good enough?
We’ll focus here for the rest of the talk.

Assume container escape has happened.

Node isolation setup

Node Isolation: Overview

Configuration:
labels

taints

De-privilege kubelet:
node authorizer

node restriction

Node setup
Label: target payments
pods for payments
nodes

kubectl label nodes $NODES class=payments

kubectl taint nodes $NODES \
class=payments:NoSchedule

Taint: repel non-payments
workloads

Pod Labels
Pod targets label with
nodeSelector

I only run on payments
nodes

spec:
 nodeSelector:
 class: payments

Pod tolerations
I can tolerate the
payments taint

spec:
 tolerations:
 - key: class
 operator: "Equal"
 value: "payments"

Node Authorizer
Limit kubelet to least
privilege, e.g:

write node, pod objects

read secrets for pods on
the node

Node

kubelet
Node

authorizer
NodeRestriction

Admission
API

server

NodeRestriction
Admission

NodeRestriction
Admission
More fine-grained
control over kubelet
mutating operations

Node

Node
authorizer

API
serverkubelet

Node Isolation: Full Picture

Configuration:
labels: target payments pods to payments nodes

taints: keep non-payments workloads off payments nodes

De-privilege kubelet:
node authorizer

node restriction

Workload steering
attack

Workload
Steering Attack

Goal: access secret

API
server payments

secret

Node
Authorizer

Node

Payments

kubelet

Node

kubelet

maximum-
uptime

Current setup
only allows nodes
with payments to
access

X

Node

1. Modify node

2. Kill real payments
pod

3. Get payments
scheduled on our
node

Workload
Steering Attack

Node

Node
Authorizer

API
server payments

secret

kubelet kubelet

maximum-
uptime

Payments

Goal: access secret

1: Modify Node
1. Modify node

a. Remove customer taint
b. Add payments label

2. Kill real payments pod

3. Get payments scheduled on our node

Demo
Compromised node: modify node

Node is ready
for payments
Stop here and hope
payments gets
scheduled on us?

…we can do better

Node

- taint "customer=maximum-uptime:NoSchedule"

+ label “class=payments”

2: Kill Payments
✓ Modify node

a. Remove customer taint
b. Add payments label

2. Kill real payments pod
a. Create fake payments static pod
b. Make fake pod older
c. Put fake pod in ReplicaSet
d. Have ReplicaSet kill the newest

3. Get payments scheduled on our node

Create fake
payments
Kubelet not allowed to
create regular pods

Can create static
(kubelet managed)
pods

These are “mirrored” as
pods in the API

Pod

Fake
Payments

Abuse
ReplicaSet
ReplicaSet: keep one
copy of payments
running

ReplicaSet

Pod

Payments

ReplicaSet

Abuse
ReplicaSet
ReplicaSet controller:
Too many copies!

Kill one
Pod

Fake
Payments

Pod

Payments
X

Abuse
ReplicaSet
ReplicaSet kills the
newest pod

...make our fake
payments pod older

ReplicaSet

Pod
2018-11-19
Fake
Payments

Pod
2019-11-19
Payments

3: Get Payments Scheduled
✓ Modify node

a. Remove customer taint
b. Add payments label

✓ Kill real payments pod
c. Create fake payments static pod
d. Make fake pod older
e. Put fake pod in ReplicaSet
f. Have ReplicaSet kill the newest

3. Get payments scheduled on our node
a. Delete fake pod
b. ReplicaSet puts real pod on our node

Demo
Kill payments pod and get secret

What
happened?
1. Modify node

2. Kill real payments
pod

3. Get payments
scheduled on our
node

4. Get secret
Node

Node
Authorizer

API
server payments

secret

kubelet

Node

kubelet

maximum-
uptime

Payments

Building up the walls

v1.11 Nodes cannot update or remove taints.

Labels with the restricted prefix can no longer be added or modified by
nodes. (*.)node-restriction.kubernetes.io/*

v1.13 The node authorizer no longer allows nodes to delete themselves.

More on the way:

Extended NodeRestrictions for Pods: https://bit.ly/2XdeWOF

Bounding Self-Labeling Kubelets: https://bit.ly/351BaFN

https://bit.ly/2XdeWOF
https://bit.ly/351BaFN

 Node vs. Pod isolation

Attack
Surfaces

Master

Kubelet

User Pod

API
Server

status,
stats, logs,

etc.

pods,
volumes,
secrets,

etc.

Compromised
Node

Node Authorizer

● Mirror Pod Restrictions
● Scheduling Restrictions
● Secrets Restrictions
● ...

Attack
Surfaces

Other Nodes

Master

Kubelet

User Pod

API
Server

status,
stats, logs,

etc.

pods,
volumes,
secrets,

etc.

External
Services

Credential
Provider

fluentd

Logs
Aggregator

CSI

Remote
Storage

External
Internet

External Load
Balancer

Kube
Proxy

npd

insecure pod
metrics-scraper

Metrics
Aggregator

metrics-server

Kubelet
RO-port

kube-dns
Compromised
Node

Nodes Pods

Node vs. Pod Isolation

Nodes Pods

Authorization Union of all the permissions of
everything on the node

Only what is needed by containers
in the pod

Node vs. Pod Isolation

Nodes Pods

Authorization Union of all the permissions of
everything on the node

Only what is needed by containers
in the pod

Network
Access

Union of all network access
required by the node

Can be restricted per-application
with NetworkPolicy, Istio, etc.

Node vs. Pod Isolation

Nodes Pods

Authorization Union of all the permissions of
everything on the node

Only what is needed by containers
in the pod

Network
Access

Union of all network access
required by the node

Can be restricted per-application
with NetworkPolicy, Istio, etc.

Monitoring Measurements are made from
within the node

Measurements may be made
from outside the pod

Node vs. Pod Isolation

Nodes Pods

Authorization Union of all the permissions of
everything on the node

Only what is needed by containers
in the pod

Network
Access

Union of all network access
required by the node

Can be restricted per-application
with NetworkPolicy, Istio, etc.

Monitoring Measurements are made from
within the node

Measurements may be made
from outside the pod

Resource
Usage

Strong isolation, depending on
underlying infrastructure

Some isolation through cgroups,
subject to noisy neighbors

Node vs. Pod Isolation

Node

Kernel

Container

Pod

Kubelet

Runtime Escaped!

Sandboxes

Node

Kernel

Container

Guest Kernel

KVM

Agent

Pod

Kubelet

Runtime

Thwarted!

Sandboxes

User-space kernel with gVisor

➢ https://g.co/gke/sandbox
➢ https://gvisor.dev

Per-pod VM with Kata-Containers

➢ katacontainers.io

apiVersion: v1
kind: Pod
metadata:
 name: mypod
spec:
 runtimeClassName: gvisor

Sandboxes
apiVersion: node.k8s.io/v1beta1
kind: RuntimeClass
metadata:
 name: gvisor
handler: gvisor

https://g.co/gke/sandbox
https://gvisor.dev
http://katacontainers.io

 Takeaways

Node Isolation Isn’t Your Only Defense

Compromise
Application
Remote Code

Execution

Escape
Container

And Escalate to
Root

Escape
Node

Attack Cluster

What can you do?

Harden the application:

1. Patch, patch, and patch some more!

2. Choose a minimal base image
https://bit.ly/37eTPzT

3. Apply application specific hardening

https://bit.ly/37eTPzT

What can you do?

Harden the container:

1. Run as non root! https://bit.ly/2qpUNJ7

2. Use resource limits https://bit.ly/37k48Tx

3. Use least privilege authorization
https://bit.ly/2CV1INd

4. Restrict network access
https://bit.ly/37cL9dv

https://bit.ly/2qpUNJ7
https://bit.ly/37k48Tx
https://bit.ly/2CV1INd
https://bit.ly/37cL9dv

What can you do?

Sandbox the pod:

● GKE Sandboxes with gVisor
g.co/gke/sandbox

● Per-pod VM with Kata-Containers
katacontainers.io

http://g.co/gke/sandbox
http://katacontainers.io

Key Takeaways

1. Nodes are really complicated!
There are many known weaknesses in node isolation.

2. Node isolation shouldn't be your only defense.

3. Look at pod isolation and sandboxing for strong isolation.

Links and references
Node Authorizer: https://bit.ly/33XRIPb

Node Restriction: https://bit.ly/2QkRqhk

Kubelet Static Pods: https://bit.ly/2Qj0DGL

Extended NodeRestrictions for Pods: https://bit.ly/2XdeWOF

Bounding Self-Labeling Kubelets: https://bit.ly/351BaFN

ReplicaSet deletion logic: https://bit.ly/2NQTL1O

Run as non-root using security context https://bit.ly/2qpUNJ7

Minimal base images: https://bit.ly/37eTPzT

Resource limits: https://bit.ly/37k48Tx

Least privilege: https://bit.ly/2CV1INd

GKE hardening guide: g.co/gke/hardening

GKE sandboxes: g.co/gke/sandbox

Kata containers: katacontainers.io

Tim Allclair
GKE Security Engineer
Twitter: @tallclair
Github: @tallclair
Google

Greg Castle
GKE Security Tech Lead
Twitter: @mrgcastle
Github: @destijl
Google

https://bit.ly/33XRIPb
https://bit.ly/2QkRqhk
https://bit.ly/2Qj0DGL
https://bit.ly/2XdeWOF
https://bit.ly/351BaFN
https://bit.ly/2NQTL1O
https://bit.ly/2qpUNJ7
https://bit.ly/37eTPzT
https://bit.ly/37k48Tx
https://bit.ly/2CV1INd
http://g.co/gke/hardening
http://g.co/gke/sandbox
http://katacontainers.io

So Many Great Security Talks!

State of Kubernetes Security https://bit.ly/2OdqgWC

CJ Cullen & Tim Allclair: Mon 11:00am

“The Devil in the Details: Kubernetes’ First Security Assessment”
https://bit.ly/34VkAr2

Aaron Small, Google & Jay Beale: Tue 10:55am

Walls Within Walls: What If Your Attacker Knows Parkour?”
https://bit.ly/33PZiLl

Greg Castle and Tim Allclair: Tue 3:20pm

“Binary Authorization in Kubernetes” https://bit.ly/32L2yqj

Aysylu Greenberg & Liron Levin: Wed 10:55am

“Piloting Around the Rocks: Avoiding Threats in Kubernetes”
https://bit.ly/36XLAbc

Robert Tonic and Stefan Edwards : Wed 2:25pm

“Hello from the Other Side: Dispatches from a Kubernetes
Attacker” https://bit.ly/2NBpe7Y

Ian Coldwater : Thur 9:22 am

“How Kubernetes Components Communicate Securely in Your
Cluster” https://bit.ly/2QrIzKP

Maya Kaczorowski: Thur 11:50am

“Sig-Auth Update” https://bit.ly/2Kk7kEQ

Mike Danese, Tim Allclair, Mo Khan: Thur 2:25pm

“Attacking and Defending Kubernetes Clusters: A Guided Tour”
https://bit.ly/36Xb0G0

Brad Geesaman, Jimmy Mesta, Tabitha Sable, Peter Benjamin : Thur
4:25pm

https://bit.ly/2OdqgWC
https://bit.ly/34VkAr2
https://bit.ly/33PZiLl
https://bit.ly/32L2yqj
https://bit.ly/36XLAbc
https://bit.ly/2NBpe7Y
https://bit.ly/2QrIzKP
https://bit.ly/2Kk7kEQ
https://bit.ly/36Xb0G0

