
KubeCon San Diego

To Infinite Scale and Beyond
Operating Kubernetes Past the Steady State

KubeCon San Diego

I work in Core Infrastructure at Spotify

We build the infra that powers your audio

I’m Austin

KubeCon San Diego

I’m Jago

Eng Director, Kubernetes & GKE at Google

We build the infra that powers the infra that
powers your audio

KubeCon San Diego

Goals for Today

 Define and discuss why it’s important to “think beyond steady states”

 Highlight the core operational challenges of running Kubernetes at scale

 Share mitigation tactics and best practices

Proprietary & Confidential

1

2

3

KubeCon San Diego

Defining steady states
Steady states are the mostly predictable milestones of scale that your platform manages.

Examples:
● Environment after initial provisioning - first deployment!

● Running workloads on a known set of underlying components

● Even high end of predictable curve - peak load or scalability at a point in time:
○ Game of Thrones episode launch (HBO @ Kubecon 2017)
○ Black Friday for many companies

https://www.youtube.com/watch?v=7skInj_vqN0

KubeCon San Diego

They are the easy part…

Steady States:

 Tend to be predictable and a single event; they happen once

 Can often be managed by autoscaling (assuming HPA settings!)

In contrast, supporting a business through growth and evolution is a
process - continuous until you brush up your resume..

1

2

KubeCon San Diego

But often, we focus too much
on these steady states and

overlook the operational
challenges of running at scale

KubeCon San Diego

Challenges at Scale

● “There is no Cloud - it’s just someone else’s computer[s].”
○ Even someone else’s computers will fail… sporadically

● Kubernetes takes care of some issues
○ Pods and even dead VMs are automatically replaced

● But zones or even regions can go down
How do you build a globally

available service on a
collection of demonstrably
fallible zones & regions?

How do you seamlessly
handle those failures?

KubeCon San Diego

… by thinking beyond the
steady states!

KubeCon San Diego

Automate Cluster Upgrades
Automate cluster upgrades for both minor

upgrades and patch versions of
Kubernetes and related extensions

Takeaways
Things we hope you can take
and act on from this session

KubeCon San Diego

Takeaways
Things we hope you can take
and act on from this session

Manage Multicluster Deployments
Create multi-tenant ephemeral clusters across

regions and manage cross-cluster deployments

KubeCon San Diego

Let’s Jump In

KubeCon San Diego

Automate Cluster Upgrades
Automate cluster upgrades for both minor

upgrades and patch versions of
Kubernetes and related extensions

Takeaways
Things we hope you can take
and act on from this session

Kubernetes Minor Release Adoption - Idealized
New versions introduced into
Alpha Clusters & Rapid
Channel

Versions that accumulate
enough cluster days & meet
SLOs are promoted:

1. To GA & available in
Regular Channel

2. To default & upgrade
target

3. To Stable Channel S
oa

k
Ti

m
e

(C
lu

st
er

 D
ay

s)

Time

In reality, upgrades happen
much more frequently:

1. Security Patches
2. Bug fixes/Regressions

a. K8s Components
b. Add-Ons
c. Container Runtime
d. Base OS

3. Novel customer use
stresses in a new
dimension.

S
oa

k
Ti

m
e

(C
lu

st
er

 D
ay

s)

Time

GKE Soak Time for Cluster Versions - Actual

Some Good News

~All APIs in the Nucleus and Application layers are stable as of 1.17*.

With stable APIs comes backwards compatibility guarantees, portability guarantees
(Conformance Tests), and (often) scale testing.

Community alignment around supporting 12 months (4 minor releases)

Users can choose to upgrade several versions sequentially

* Ingress and CronJob in progress.

Some Good News

KubeCon San Diego

Learnings
Automate Frequent, Error Prone Changes

Cluster Upgrades happen several times per Minor release
Even older, more stable versions receive backported bug fixes and security patches

Kubernetes V1 is (just about) Done!
API Maturity has improved; rate of new functionality has decreased
Upgrades are now about security and stability not getting the newest features fastest

Being too early, or too late, means you are more alone (read at Risk)
Choose Release Channel or Minor Release based on Risk Tolerance
Watch Release Notes, patch release PR / cherry pick rate to manage risk

KubeCon San Diego

Learnings (continued)
Avoiding upgrades leads to ‘haunted graveyards’

When something is scary, do it more not less

Productize and Limit Customization
Every customization that is not reproducible is debt
ssh + apt-get install = node that can’t be upgraded or replaced

Build a Culture of dynamic stability
Smaller, more frequent changes typically mean smaller, more contained incidents
Teams that release more create more resilient systems
Observability & Controlled Releases are necessary

KubeCon San Diego

Ok, sure, but….

HOW?

KubeCon San Diego

Solutions - basic

Select Regular Release Channel; Opt In to Node Auto Upgrade & Node Auto
Provisioning; Enable Logging.

KubeCon San Diego

Solutions - intermediate
Create a Canary Cluster in a Day 1 Region {europe-west3, us-east1} and
Production Cluster(s) in a Day 4 Region {asia-northeast2, asia-south1,
europe-north1, europe-west4, us-central1}

Select Regular Release Channel; Opt In to Node Auto Upgrade & Node Auto
Provisioning; Enable Logging.

Implement StackDriver Uptime Checks for a few key health indicators, and set up
corresponding alerts.

If Uptime Check fails for Canary Cluster, use maintenance windows to delay upgrade
to Production Cluster(s).

https://cloud.google.com/kubernetes-engine/versioning-and-upgrades#rollout_schedule
https://docs.google.com/document/u/1/d/e/2PACX-1vQ2J5Ervcv23ISYlw-FJBZHn9r-d3YVu7ZuPH_r2yXrEl243P6-q0raSqc4QtmHMPn8SOoFBqgG5Z4w/pub

KubeCon San Diego

Solutions - advanced
Embrace Declarative Configuration - Configuration as Code Data

Automate cluster creation, configuration & provisioning other cloud resources
Use Terraform* (Be careful! Read the Terraform Up & Running Book)
Use Kustomize for configuration overlay
Explore Config Connector to use Kubernetes Resource Model everywhere

Manage Upgrades of Large (1000+ Nodes) Nodepools
Surge upgrades; or
Create new Nodepool at the new version & migrate traffic to it

Invest in a Global Topology Strategy
Multi-cluster, HA & Disaster Recovery
Note: Networking gets complicated

https://cloud.google.com/config-connector/docs/reference/resources

KubeCon San Diego

Takeaways
Things we hope you can take
and act on from this session

Manage Multicluster Deployments
Create multi-tenant ephemeral clusters across

regions and manage cross-cluster deployments

KubeCon San Diego

Challenges

 Independent of what’s possible for your scale, you don’t want one big cluster

○ Assume failure! It will happen! One cluster is a single point of failure!
■ The scheduler could fail to assign any new pods to nodes
■ The cluster autoscaler could fail to increase the size of the cluster to meet demands
■ Add-ons, CRDs/Operators, 1st or 3rd Party Applications can DDoS the API Server
■ A Terraform mistake can delete an entire cluster

● KubeCon Europe 2019: How Spotify Accidentally Deleted All its Kube Clusters

 Deviation in your cluster configuration is really bad
○ During an incident, it should be trivial to create or replace a cluster

1

2

https://kccnceu19.sched.com/event/MQbb/keynote-how-spotify-accidentally-deleted-all-its-kube-clusters-with-no-user-impact-david-xia-infrastructure-engineer-spotify

KubeCon San Diego

Learnings
Insights

Developers don’t care which cluster
they deploy to, why expose it to them

front and center?

Network is complex… and highly
challenging to evolve

Tactics

Give developers visibility into their
deployments at the levels they care

about (reliability, observability)

Consider Knative for stateless
applications

Plan Network topology early
(maybe first!)

KubeCon San Diego

Spinnaker

GKE

Build System

TugboatCompass

Enter Compass

KubeCon San Diego

Compass

This is the file we use
to specify service

deployments

deployment.yaml

KubeCon San Diego

Compass

This bit specifies
whether you’re
deploying to

Kubernetes and/or
Helios

https://github.com/spotify/helios

KubeCon San Diego

Compass

Here we allow
developers to specify
one or many regions

for their service
deployment

KubeCon San Diego

Compass

Lastly, this is where
developers define their
per region replication

KubeCon San Diego

… but then there are many deployments … and things can get messy

KubeCon San Diego

Manage it!
Compass abstracts and manages:

● Which cluster a service is deployed to based
on different algorithms

● If a group of services should be deployed to
the same set of clusters together

Spinnaker

GKE

Build System

TugboatCompass

KubeCon San Diego

KubeCon San Diego

We then visualize this for
engineers in our developer

portal and allow them to
interface with their current
versions and deployments

seamlessly

KubeCon San Diego

Alternative Solutions
Too Simple + Leads to Over-Provisioning
● Deploy every services to every cluster

Too Complex
● Kubernetes Cluster Federation

○ /kubernetes-sigs/kubefed

Concept diagram for Kubernetes Cluster Federation

https://github.com/kubernetes-sigs/kubefed

KubeCon San Diego

Pitfalls

For Developers
Make it easy to understand and do

the simple thing by default

For Operators
Don’t build a complex abstraction or

algorithm that you don’t need as you’ll
just have to maintain it later… or

worse reason about it in an incident

Complexity is (mostly) Bad

For Operators
If you don’t have this problem, don’t

built a system like it!

Roll it out to a single cluster,
then expand

Start Simple

KubeCon San Diego

Takeaways
Things we hope you can take
and act on from this session

Automate Cluster Upgrades
Automate cluster upgrades for both minor

upgrades and patch versions of
Kubernetes and related extensions

Manage Multicluster Deployments
Create multi-tenant ephemeral clusters across

regions and manage cross-cluster deployments

Project Title 00.00.2015 Proprietary & ConfidentialSpotify

