
Throttling: New Developments in

Dave Chiluk, Linux Platform Software Engineer

Welcome. Here’s what we’ll cover today.

+ How container CPU constraints work

+ Reproducing the throttling problem

+ The root cause

+ Solutions and workarounds

Application Performance with CPU Limits

Throttling: New Developments in Application
Performance with CPU Limits

Dave Chiluk
Linux Platform Software Engineer, Indeed

Dave Chiluk
Linux Platform Software Engineer

250M unique monthly visitors1

25M jobs

1M employers with sponsored jobs

10k employees

1 Source: Google Analytics, Unique Visitors, September 2018

Roadmap

CPU Limit Basics The Problem Reproducing the
Problem

Solution and
Workarounds

Roadmap

CPU Limit Basics The Problem Reproducing the
Problem

Solution and
Workarounds

Who should care about CPU limits?

EVERY CONTAINER
ORCHESTRATOR
ON THE PLANET

Setting CPU Limits in Kubernetes

"resources": {

 "limits": {

 "cpu": "200m",

 },

 "requests": {

 "cpu": "134m",

 }

 }

Hard Limit

Soft Limit

Located in pod definition @spec.containers[].resources.

Soft Limits

.requests = Soft Limits - Cgroup cpu.shares

Soft Limits

Soft Limits

Actual Usable CPU on 88 Core Machine

88 Core NodeRequest = 1000m Max 88 Cores, Min 88

Request = 1000m Request = 1000m Max 88 Cores, Min 44

1000m 1000m 2000m Max 88 Cores, Min 22

1000 1000 2000m Max 88 Cores, Min 11 4000m

Soft Limits

The Floor for Usable CPU

Hard Limits

.limits = Hard Limits - Cgroup CFS Bandwidth Control

Containers are limited to using quota amount of CPU time in a period.

THROTTLING

Hard Limits

The Ceiling for Usable CPU

Throttled time

nr_periods

nr_throttled

Throttling metrics

Throttled time

nr_periods

nr_throttled

Throttling metrics

Throttled time is the sum total time a thread in a
cgroup was throttled

Throttled time

nr_periods

nr_throttled

Throttling metrics

Throttled time is the sum total time a thread in a
cgroup was throttled
nr_periods is the number of periods the
application was running

Throttled time

nr_periods

nr_throttled

Throttling metrics

Throttled time is the sum total time a thread in a
cgroup was throttled
nr_periods is the number of periods the
application was running
nr_throttled is number of those periods the
application was throttled

Throttled time

nr_periods

nr_throttled

Throttling metrics

Throttled time is the sum total time a thread in a
cgroup was throttled
nr_periods is the number of periods the
application was running
nr_throttled is number of those periods the
application was throttled

Throttled percentage

Conceptual Model: Unconstrained

100

200

300

400

500

S
cheduled on C

P
U

1

Time (ms)

0

CPU time required 200ms

Conceptual Model: Unconstrained

100

200

300

400

500

S
cheduled on C

P
U

1

Time (ms)

0

CPU time required 200ms

HTTP req/resp

Conceptual Model: Unconstrained

100

200

300

400

500

S
cheduled on C

P
U

1

Time (ms)

0

Request completed in 200ms

HTTP req/resp

CPU time required 200ms

R
un

ni
ng

Conceptual Model: CFS Bandwidth Control

500 Time (ms)

Request

400

300

200

100

0

Request completed in 440ms

Throttled Throttled Throttled Throttled

CPU time required 200ms
CPU quota .4 CPU

Quota per period 40ms

CPU Usage 200ms
Throttle Time 240ms

Throttled % 80%
Monitoring CPU Usage .4 CPU

40

Roadmap

CPU Limit Basics The Problem Reproducing the
Problem

Solution and
Workarounds

Latency Issues

CPU Usage

Limit

Throttling

Low CPU Usage but High Throttling?

After increasing Limit

After increasing Limit

After increasing Limit

> 200ms → 13 ms!

What we know

What we know

➔ Workarounds

+ Increasing CPU quota mitigates throttling

What we know

➔ Workarounds

+ Increasing CPU limit mitigates throttling

➔ Possible root causes

+ High Core Count ?

+ CPU architecture ?

+ Kernel version ?

+ Spectre-meltdown mitigations ?

Roadmap

CPU Limit Basics The Problem Reproducing
the Problem

Solution and
Workarounds

+ ab

+ stress-ng

+ <bash>

for ((i=1 ; i <= 1000 ; i++)) ; do
curl -s http://127.0.0.1:8888/info/healthcheck 2>&1 >/dev/null &
sleep .005s

done

Report amount of throttling
</bash>

Reproducing

Info

GOMAXPROCS

.6 Limit , GOMAXPROCS unset .4 Limit, GOMAXPROCS = 3

What We Know

Workarounds
+ Increase CPU quota
+ Decrease number of threads in the application

+ Golang - set GOMAXPROCS
+ Java - move to newer JVMs that are cgroup aware.

+ Move from fractional to whole cpu shares.

To Do
+ Create Custom Reproducer

+ Fix Kernel Scheduler

The Reproducer: Fibtest

Multithreaded calculation of the
Fibonacci sequence

+ Fast threads – calculate as fast as possible

+ Slow threads – calculate 100 iterations, then sleep for 10ms

+ Each thread is pinned to it’s own CPU

+ https://github.com/indeedeng/fibtest

Fibtest

https://github.com/indeedeng/fibtest

Running Fibtest

Running Fibtest

Running Fibtest

Running Fibtest

~3x

$ sudo trace-cmd record -e 'sched_wakeup*' -e sched_switch -F -c ./runfibtest 16

Fibtest Tracing

ftrace/kernelshark of Fibtest on 3.16-4.17

Fast

Slow

100 ms

48 ms

ftrace/kernelshark of Fibtest on 4.18-5.3.8

Fast

Slow

35 ms

The Causal Commit

512ac999

➔ Fix for inadvertent throttling due to clock-drift

512ac999
Clock-drift problem

512ac999

➔ Fix for inadvertent throttling due to clock-drift

➔ Fixed per-cpu quota to expire on period
boundaries

Real World vs. Conceptual Model

➔ Multiple CPUs

➔ Many threads *(sometimes thousands)

➔ Cores run at different speeds - Use performance mode

➔ Schedulers are hard
Quota is split into 5ms slices and assigned to individual CPUs

(1 CPU of quota = 100ms/period = 20 slices/period) = not enough for large machines

Per-cpu quota will expire if not used within a period

Real World Example

20ms of quota

Nothing Running

Current Time

No Quota Yet

Real World Example

Q
uota Transfer

Worker 1 Running

Real World Example

Q
uota Transfer

Worker 2 Running

Real World Example

Q
uota Transfer

Runs for 1ms

Real World Example

Q
uota Transfer

Slice persists

Real World Example

Q
uota Transfer

S
la

ck
 r

et
ur

ne
d

Real World Example

Q
uota Transfer

S
la

ck
 r

et
ur

ne
d

Global Quota Exhausted

Real World Example

Q
uota Transfer

S
la

ck
 r

et
ur

ne
d

Real World Example

Q
uota Transfer

S
la

ck
 r

et
ur

ne
d

Worker 2 Throttled

Unused Quota on CPU 1

Real World Example

Q
uota Transfer

S
la

ck
 r

et
ur

ne
d

Unused Quota Expires

IMPACT

1ms/100ms * (88 CPUs-1) = 87ms/100ms

= 870m = .87 CPU

Roadmap

CPU Limit Basics The Problem Reproducing the
Problem

Solution and
Workarounds

➔ Remove 512ac999

➔ Burst bank / Rollover minutes

➔ Remove all per-CPU
expiration logic

Possible
Solutions

Remove all per-CPU expiration logic

➔ 5 months of debate

➔ 6 patch iterations
The Solution

Commits: de53fd7aedb1 & 763a9ec06c40

➔ Applied to 5.4 Kernel

➔ linux-stable

◆ 4.14.154+, 4.19.84+, 5.3.9+

➔ Distro kernels

◆ Ubuntu 5.3.0-24+

◆ Ubuntu 4.15.0-67+

◆ RHEL7 - kernel-3.10.0-1062.8.1.el7

◆ RHEL8.2 - WIP

The Solution

Kernel 5.3.7

Kernel 5.3.9

The Solution

 3x

Takeaways

➔ Monitor your throttled %

➔ Upgrade your Kernels

➔ Use whole cpu quotas

➔ Increase quota where necessary

Questions?

Dave Chiluk
Linux Platform Software Engineer

@dchiluk

http://ads.indeed.com/

More developments:

Setting CFS Period (GH #51135)

WIP:

Unset CFS quota with CPU sets (GH #70585) (GH #75682)

Other Developments:

https://github.com/kubernetes/kubernetes/issues/51135
https://github.com/kubernetes/kubernetes/issues/70585
https://github.com/kubernetes/kubernetes/pull/75682

Things I’d Like to see

Kernel: C-state aware quotas

Kernel: Burstable Cgroup CPU Limits

Kubernetes: Pod level Resource constraints

Kubernetes: Node Level CPU Overcommit

