
There's a Bug in My
Service Mesh! What Do
You Do When the Mesh
is At Fault?

+

Ana Calin
Photo Goes Here

Systems Engineer @ Paybase

@AnaMariaCalin

@calinah

"White dog smiles at the camera" by Ashley Coates is licensed under CC BY-SA 2.0

Risha Mars
Software Engineer @ Buoyant

@marzipan

@rmars

Mmm...what’s cooking?
Mushrooms & trees ��

Meshes - what is Linkerd?

Mysteries - symptoms of the bug�� ♀

Microscopes - finding the bug��

Mastery! - understanding how to find bugs!��

Interacting with an OSS project
Users vs Maintainers

and

● Users and maintainers should be in a symbiotic
relationship

● An OSS project grows based on user
feedback, user testing and user contributions

● Some OSS projects are not funded and the
work is not paid for so be nice - approach
everything in a blame-free way

● Effective communication can open
opportunities to learn and fix bugs fast and
painlessly

● Being nice is nice

Users & Maintainers of OSS

What is Linkerd?

Your application
Pod

Your application + data plane
Pod

Traffic flow in a meshed application

https://docs.microsoft.com/en-us/azure/aks/servicemesh-linkerd-about

https://docs.microsoft.com/en-us/azure/aks/servicemesh-linkerd-about

Service meshes are awesome
● Automatic mTLS between your meshed services

● Telemetry and Monitoring

● Distributed Tracing

● HTTP, HTTP/2, and gRPC Proxying

● Latency-aware load balancing

● Retries and Timeouts

● TCP Proxying and Protocol Detection

● API driven payments platform

● B2B – marketplace, gig/sharing economies, crypto,
sophisticated payment flows

● Highly regulated

Why Linkerd?
● ~80% OSS, 100% running on K8s

● 50+ microservices

● gRPC load balancing for scalability

● Distributed tracing

What we expected vs what we got

A framework
for troubleshooting

“Be warned that being an expert is more than understanding how
a system is supposed to work. Expertise is gained by

investigating why a system doesn't work.”

Brian Redman

Site Reliability Engineering: How Google Runs Production Systems, Chapter 12

Diagnose: System without Linkerd

Diagnose: System with Linkerd

Problem Report: Filing an Issue
● Follow the recommendations

● Attach log outputs

● Don’t assume people know your system –
be as detailed as possible

● Include what you’ve already tried

● This is universal advice any time to ask
for external help (regardless of medium)

Triage

Triage: Reproducibility
● Is the problem clearly stated?

● Are there enough details to reproduce the bug?

● What is the smallest reproducible test case?

● Can we reproduce it without having your whole
architecture in play?

Triage: Impact
● How bad is the bug?

○ Does it impact security? Usability?

● Are multiple users experiencing this bug?

○ If a user files a good bug report, other users can comment
if they are also experiencing it!

Diagnosing the Bug
Where could the bug be?

Is it…

● in the application?
● in the application’s dependencies?
● in the Linkerd control plane? (Golang)
● in the Golang dependencies?
● in the Linkerd-proxy? (Rust)
● in the Rust dependencies?
● in Kubernetes?
● in the Linux kernel?

Diagnosing the Bug
● The initial bug report contained proxy and application logs

○ Application logs (kubectl logs -f deploy/foo -n bar)

○ Proxy logs (linkerd logs)

○ There were protocol errors on requests that had gRPC metadata in the headers

● We asked for further detail: linkerd tap
○ Examined the requests between services in the application

● We dived even deeper: tcpdump
○ Looked at the raw TCP packets

○ Saw that headers were being split across two frames

○ This is unusual, as headers typically only take up one frame

Understanding the Bug(s)!
🤔 HTTP/2 in the Linkerd service mesh

🤔 HTTP/2 frame types and header compression

https://knowyourmeme.com/memes/thinking-face-emoji-%F0%9F%A4%94
https://knowyourmeme.com/memes/thinking-face-emoji-%F0%9F%A4%94

Understanding the Bug(s)!
🤓 HTTP/2 in the Linkerd service mesh

🤔 HTTP/2 frame types and header compression

https://knowyourmeme.com/memes/thinking-face-emoji-%F0%9F%A4%94

https://docs.microsoft.com/en-us/azure/aks/servicemesh-linkerd-about

http/2

HTTP/2 in the Linkerd service mesh

https://docs.microsoft.com/en-us/azure/aks/servicemesh-linkerd-about

Understanding the Bug(s)!
🤔 HTTP/2 in the Linkerd service mesh

🤓 HTTP/2 frame types and header compression

https://knowyourmeme.com/memes/thinking-face-emoji-%F0%9F%A4%94

https://developers.google.com/web/fundamentals/performance/http2

HTTP/2: multiplexing, frame types

https://developers.google.com/web/fundamentals/performance/http2

https://developers.google.com/web/fundamentals/performance/http2

https://developers.google.com/web/fundamentals/performance/http2

https://developers.google.com/web/fundamentals/performance/http2

https://developers.google.com/web/fundamentals/performance/http2

Note the repeated headers

Bug #1: Continuation Frame Panic
The code panicked when a CONTINUATION frame contained a
repeated header

Bug #2: Evicted Table Header Index
We were looking up repeated headers using the
wrong index

The bugs are fixed!

Aftermath:
Linkerd diagnostic improvements!
● A debug sidecar container

○ Deploy the container into a failing pod to diagnose problems

○ The debug image contains tshark , tcpdump , lsof, and iproute2

○ Once installed, it automatically logs all traffic with tshark

● More visibility into application traffic with linkerd tap
○ Can now also view request bodies

● Tracing in the Rust libraries
○ Increased visibility into the libraries we depend on

Useful commands for troubleshooting

Useful commands for troubleshooting

Summary
There was more than one bug! The bugs were deep in the stack!

All got fixed fairly quick due to:

● Detailed bug reports

● Space to test with/without linkerd, different versions

● Used those log suggestions in the issue template

● Looked through code / other bugs

F R O M Y O U R F R I E N D S A T

Linkerd has a
friendly, welcoming
community! Join us!

@linkerd

github.com/linkerd

slack.linkerd.io

+

Slides at
bit.ly/bug-in-my-mesh

@paybase

github.com/paybase

https://paybase.io/

https://paybase.io/

bit.ly/bug-in-my-mesh

https://developers.google.com/web/fundamentals/performance/http2

https://http2.github.io/http2-spec/#FrameHeader

https://tools.ietf.org/html/rfc7541

https://linkerd.io/2/tasks/using-the-debug-container

https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one

https://linkerd.io/2/reference/architecture

https://docs.microsoft.com/en-us/azure/aks/servicemesh-linkerd-about

References

https://developers.google.com/web/fundamentals/performance/http2
https://http2.github.io/http2-spec/#FrameHeader
https://tools.ietf.org/html/rfc7541
https://linkerd.io/2/tasks/using-the-debug-container/
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://linkerd.io/2/reference/architecture
https://docs.microsoft.com/en-us/azure/aks/servicemesh-linkerd-about

