The Myth of
the

Mono-Cluster



> whoami

e pm for cdn @ google.

e open-source malntalner
(github.com/gorilla)

e still unsure whether writing
conf talks 1s a good 1idea.



> this talk?

e reducing the blast radius of your k8s clusters
e understanding the failure modes

e consilderations as you scale k8s at an
org-level



> the myths

e one large cluster makes sense

e isn't this what google does w/ borg?

e 1 have to manage more masters == bad

e centralized control

e keep scaling - 1t's kubernetes!

e don't want teams running their own stuff

e easler to maximlse resource usage



Big @ Cluster @ Energy



> the problem

e building a single, company-wilde €etuster
deployment platform sounds like a good 1dea,
but 1t 1sn't.

e teams work at different paces

e they all have different risk tolerances



> challenges

e avolding following the org chart
e how bilg 1s too big?
e how small 1s too small?

e multi-cluster orchestration



¥ Common Failure Modes ¥



fail

what components failure counts scale

proportionally (or worse) with cluster
size/shape?

what 1s the 1mpact on my services?

can we avoild 1t?



> dns

e can often become the bottleneck

e more-so 1f you're relying on syncing to DNS
infrastructure outside of your cluster
(likely)

e DNS performance degradation severely
impacts cluster-wide performance



> dns

& @ github.com/hjacobs/kubernetes-failure-stgges

L] hjacobs / kubernetes-failure-stories




> aplserver & etcd

e your control plane

e scaling your masters vertically only
gets you so far

e can be really hard to fix problems
(rollback, scale out) if the
apiserver 1s unavaillable or
unresponsive



., Kelsey Hightower &
@kelseyhightower
Control planes should be scoped to the smallest failure
domain you can afford.

A single Kubernetes control plane (think multi regional) is

one bad configuration or upgrade away from a regional
outage.

Multiple zonal clusters, and canary rollouts, is one way to
mitigate this.

719 AM - Jun 12, 2019 - Twitter for iPhone




. Jesse Noller @jessenoller - Nov 8
Here my quick and dirty Kubernetes issue diagnosis a thread:

1. Random latency talking over network
A: check disk 10 on the host, you're probably exceeding the 10 levels on
the OS disks. | bet it’s disk

2. My cluster goes down during an upgrade
A: set a pod disruption budget

¢ 10 ™ 102 7 28

~ Jesse Noller
@jessenoller

TIdr your workload can completely and totally impact
Kube operations and stability unless you fully profile your
app and it's containers, especially at the bare Host VM
level

6:24 AM - Nov 8, 2019 - Twitter for iPhone




Multi-tenancy has multiple
dimensions



ol Q_/ \ Josh Rosso
’ @joshrosso

What was your team's biggest "misstep"” when
architecting, deploying, and/or operating @kubernetes
for the first time?

9:05 AM - Jun 22, 2019 - Twitter Web Client

19 Retweets 45 Likes

9 (i

@ Josh Rosso @joshrosso - Jun 22

0y Replying to @joshrosso

Mine was trying to make clusters too "general-purpose". IMO, we wasted
too much time making a single cluster satisfy all workload requirements.

And we missed out on the opportunity to gain k8s operational knowledge
early by running smaller clusters and learning how they worked.

o1 4 ¥ 31 a




> S07?

e so we should avold a single prod cluster
e that makes sense!

e but what do we do next?



Knee-jerk reaction?









EVERYBODY

S

\- ; - "'
' o~ al L
J_‘—
:



® B B W






organizations which design systems ... are

constrained to produce designs which are

copies of the communication structures of
these organizations.

— M. Conway



Conway's Law




> why many clusters?

e teams work at a different pace, and have
different risk tolerances

e being able to manage that across a handful
of clusters gives you flexibility.

e avold moving at the pace of your most
risk-averse team



specifics

instead of one pet, you have lots of pets

(in the real world this is great, but in
k8s land, not so much)

your dev teams are now platform teams



& & & & F




But we also know multi-cluster
1s hard.



> hard things

e version drift (k8s, components)

e security policy enforcement

e networking

e security patches (CVEs!)

e deployment strategies (ci/cd)

e sre & ops vs dev teams (ownership)

e troubleshooting



OK, where do we go from here?



> no pets allowed

e use the Cluster API or your Cloud
provider's toolkits to define your base
cluster config

e use CI and tools like OPA/Gatekeeper to
enforce consistent policles across teams &
audit drift

e take a multi-cluster 1ngress approach to
de-risk your customer-facing services



So, what 1s the right number
of clusters?



> criteria

e map out your “risk domains”

e what services are the most likely to impact
others (e.g. host level, network level)

e what is your (in real dollars) budget?



> who?

e a dedicated platform team should run your
clusters

e be responsible for upgrades, security

e avoid exposing native k8s APIs to all comers:
most folks want to deliver applications and not
be forced into understanding the complexities of
the kubernetes scheduler



. B Kelly Sommers
L @kellabyte

I've watched org after org suffering from outages due to
Kubernetes behaviours. This is not to say Kube is bad or

buggy, there's just a TON of knowledge required to run
Kube effectively and avoid accidental outages. It's trendy,
but | think it's better off with mature ops dept.

6:36 AM - Jun 12, 2019 - TweetDeck




> takeaways

e start small
e document your shortcuts

e understand you’ll never capture all
requirements up front

e be mindful of the blast radius

e k8s 1s a platform: let your platform teams
run 1t.



> thanks

e thank you!

e see my admission control
micro-framework at
github.com/elithrar/admission-

control

e enjoy the rest of kubecon!


http://github.com/elithrar/admission-control
http://github.com/elithrar/admission-control

