
The Myth of 

the 

Mono-Cluster



> whoami

● pm for cdn @ google.

● open-source maintainer 
(github.com/gorilla)

● still unsure whether writing 
conf talks is a good idea.



> this talk?

● reducing the blast radius of your k8s clusters

● understanding the failure modes

● considerations as you scale k8s at an 
org-level



> the myths

● one large cluster makes sense

● isn't this what google does w/ borg?

● i have to manage more masters == bad

● centralized control

● keep scaling - it's kubernetes!

● don't want teams running their own stuff

● easier to maximise resource usage



Big 👏 Cluster 👏 Energy



> the problem

● building a single, company-wide cluster 
deployment platform sounds like a good idea, 
but it isn't.

● teams work at different paces

● they all have different risk tolerances



> challenges

● avoiding following the org chart

● how big is too big?

● how small is too small?

● multi-cluster orchestration



💥 Common Failure Modes 💥



> fail

● what components failure counts scale 
proportionally (or worse) with cluster 
size/shape?

● what is the impact on my services?

● can we avoid it?



> dns

● can often become the bottleneck

● more-so if you’re relying on syncing to DNS 
infrastructure outside of your cluster 
(likely)

● DNS performance degradation severely 
impacts cluster-wide performance



> dns



> apiserver & etcd

● your control plane

● scaling your masters vertically only 
gets you so far

● can be really hard to fix problems 
(rollback, scale out) if the 
apiserver is unavailable or 
unresponsive



> 



> 



Multi-tenancy has multiple 
dimensions



> 



> so?

● so we should avoid a single prod cluster

● that makes sense!

● but what do we do next?



Knee-jerk reaction?













organizations which design systems ... are 
constrained to produce designs which are 
copies of the communication structures of 

these organizations.

— M. Conway



A cluster per 
team

Conway's Law🤝



> why many clusters?

● teams work at a different pace, and have 
different risk tolerances

● being able to manage that across a handful 
of clusters gives you flexibility.

● avoid moving at the pace of your most 
risk-averse team



> specifics

● instead of one pet, you have lots of pets

● (in the real world this is great, but in 
k8s land, not so much)

● your dev teams are now platform teams



🐕

🐕
🐕

🐕 🐕 🐕

🐕
🐕
🐕

🐕

🐕 🐕

🐕

🐕

🐕



But we also know multi-cluster 
is hard.



> hard things

● version drift (k8s, components)

● security policy enforcement

● networking

● security patches (CVEs!)

● deployment strategies (ci/cd)

● sre & ops vs dev teams (ownership)

● troubleshooting



OK, where do we go from here?



> no pets allowed

● use the Cluster API or your Cloud 
provider's toolkits to define your base 
cluster config

● use CI and tools like OPA/Gatekeeper to 
enforce consistent policies across teams & 
audit drift

● take a multi-cluster ingress approach to 
de-risk your customer-facing services



So, what is the right number 
of clusters?



> criteria

● map out your “risk domains”

● what services are the most likely to impact 
others (e.g. host level, network level)

● what is your (in real dollars) budget?



> who?

● a dedicated platform team should run your 
clusters

● be responsible for upgrades, security
● avoid exposing native k8s APIs to all comers: 

most folks want to deliver applications and not 
be forced into understanding the complexities of 
the kubernetes scheduler



> 



> takeaways

● start small

● document your shortcuts

● understand you’ll never capture all 
requirements up front

● be mindful of the blast radius

● k8s is a platform: let your platform teams 
run it.



> thanks

● thank you!

● see my admission control 
micro-framework at 
github.com/elithrar/admission-
control

● enjoy the rest of kubecon!

!

http://github.com/elithrar/admission-control
http://github.com/elithrar/admission-control

