
Take Envoy Beyond a K8s Service Mesh-
to Legacy VMs + More
Steve Sloka, VMware
Steven Wong, VMware

Envoy’s mission is to extract network and communication security code from applications in a way
that developers and users can deploy components that just work no matter where they run or what
hosts them.

This session will show how to leverage Envoy to achieve interoperation of applications and services,
split across Kubernetes and traditional VM or bare metal hosts. We’ll look at how to incrementally
bring Kubernetes into an existing application architecture based on existing VM or bare metal
applications and services.

Specific examples will demonstrate:
- Using Contour with Envoy as an Ingress and load balancer solution with a richer feature set than
some common alternatives
- Sending requests from VM workloads to Kubernetes services
- Direct requests to services running on a VM from Kubernetes
- Dynamical traffic steering - K8s and VM workloads at the same time

Abstract This slide hidden during presentation –
retained for search classification of published deck

3

 Steve Sloka

 Pittsburgh, PA

 Senior Member of Technical Staff, VMware

 Maintainer of Contour, Gimbal, and the
Elasticsearch Operator. Steve is also a
Kubernetes contributor and has been working
with it since early 2015.

 @stevesloka

Steven Wong

Los Angeles, CA

Open Source Engineer, VMware

Active in Kubernetes community since 2015 –
storage, IoT+Edge, running K8s on VMware
infrastructure.

GitHub: @cantbewong

Speakers

Agenda

4

Overview:
 What are we trying to Solve

What is Envoy?
 What is Service Mesh?

Taking Envoy beyond Service Mesh:
 Envoy as an Ingress and Load Balancer

Demo:
Bridge Legacy VMs and bare metal into a Kubernetes cluster

Resources:
 Where to learn more

5

Lots of connected items + lots of churn - tracking
where services exist is difficult

Are the endpoints healthy?

App developers are not usually networking or
security experts

 Why Envoy / Service Mesh?

Photo by Andrew Wulf on Unsplash

Need repeatable deployments across
environments
● How do we configure load balancing

and ingress?
○ Tickets / Manual (error prone)

https://unsplash.com/@andreuuuw?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

6

Announced by Lyft in 2016

What is Envoy

Envoy is an open source edge and service proxy,
designed for cloud-native applications.

Goal:
• Move network details+code out of application - make

network transparent to app devs and users

Architecture Emphasis:
• API driven; dynamic configuration support
• top notch support for observability and debugging

https://eng.lyft.com/announcing-envoy-c-l7-proxy-and-communication-bus-92520b6c8191

7

• Automatic load balancing for HTTP, gRPC, WebSocket, and TCP traffic

• Fine-grained control of traffic behavior with rich routing rules, retries, failovers,
and fault injection

• A pluggable policy layer and configuration API supporting access controls,
rate limits and quotas

• Automatic metrics, logs, and traces for all traffic within a cluster, including
cluster ingress and egress

• Secure service-to-service authentication with strong identity assertions
between services in a cluster

solve / manage network + security issues at scale

Why service mesh?

Istio
Service mesh

• Discovery
• Advanced

Routing
• Canaries
• Load Balancing

•Authentication
•Encryption
•TLS Certificates
•Org-wide
policies

•Centrally manage
operations

•Heath checks,
•circuit breakers
•Retries
•Rate limiting

•Monitoring
• Traffic
• Service

dependencies
•Distributed Tracing
•Audit Logs

connect secure control observe

9

Service mesh sounds really
good..

But what about my legacy?

I have things outside
Kubernetes

 Is there no hope?

Photo by Carsten Pietzsch - Eigenes Werk
de.Wikimedia.org used under CC by 3.0 licence

https://commons.wikimedia.org/wiki/User:Theonlytruth
https://de.wikipedia.org/wiki/Berlin-Pl%C3%A4nterwald#/media/Datei:Kaputte_Dinosaurier_Spreepark.JPG

10

Very fast look at Istio mesh
expansion
too much to demo in a 35 minute session

but in deck so you can come back later

much of his is not currently documented

Photo toine Garnier on Unsplash

https://unsplash.com/@toineprojects
https://unsplash.com/photos/iRnUeA04kUY

11

pre-conditions in Kubernetes cluster

● Install Istio with global.meshExpansion.enabled = true (not default)
● You will need a load balancer (such as MetalLB)

On VM(s)

● cluster.env file (config settings) key and cert files
● Istio/Envoy sidecar .deb package
● Verify node_agent works
● start istio-auth-node-agent, istio service daemons

If hosting a service on VM

● create a ServiceEntry resource using kubectl
● use isioctl to register (“map”) the VM hosted service

summary of steps - lots more detail in “hidden slide” in our published deck
Istio Mesh expansion - join VMs and bare metal to K8s

https://storage.googleapis.com/istio-release/releases/1.2.2/deb/istio-sidecar.deb%20-o%20istio-sidecar.deb

12

Taking Envoy beyond a
Service Mesh
Use Envoy to make
Ingress / Load Balancer

13

• Complex

• Overhead in cluster

• Difficult to debug

Why not service mesh?

14

Envoy as Ingress and Load Balancer

15

Kubernetes Ingress Controller that leverages Envoy as the data plane:

• Dynamically updated load balancing configuration without dropped
connections

• Safely supports ingress in multi-team Kubernetes clusters

• Enables delegation of routing configuration for a path/header or domain to
another Namespace

• Flexibly defines service weighting, load balancing strategies, and more
without annotations

Deploy and manage Envoy as a load balancer
Contour Highlights

16

Contour Overview

Load Balancer

17

Routing Overview

18

Something “meshy”
What we want!

19

Contour + Gimbal
Route to Legacy VMs, bare
metal, and Kubernetes

20

Contour Overview

21

TLDR

Contour is NOT a service mesh!

22

23

Demo environment

Linux VM

KinD: Gimbal

KinD: Blue

KinD: Green

VMware vSphere

LinuxVM: app01

LinuxVM: app02

LinuxVM: web01

LinuxVM: web02

WinVM: windows

“Bare Metal”

PI: baremetal01

24

Resources
Where to learn more

25

Learn more…..
How to get involved with the Contour Project

Regular Work Group Meeting:
Community Meeting
Third Tuesday of each month @ 3pm PT

Documentation:
• projectcontour.io/

Slack:
• #contour on Kubernetes Slack

https://projectcontour.io/

26

Let’s chat!

Meet the Maintainers
@ 12:30pm today!

look for Contour signs in conference
lunch area (HALL C)

Thank You
@stevesloka

@cantbewong

28

 Good News!

 Your legacy VMs and bare metal machines can join
a service mesh.

 Consume services Hosted on Kubernetes, AND
expose services to consumers on Kubernetes

 too much to demo complete steps today

 but in deck so you can come back later

 much of his is not currently well documented

29

 During install

 --set global.meshExpansion.enabled=true

Define the namespace the VM joins

export SERVICE_NAMESPACE="default"

Determine and store the IP address of the Istio ingress gateway since the mesh expansion
machines access Citadel and Pilot through this IP address. Used in a later step.

export GWIP=$(kubectl get -n istio-system service istio-ingressgateway -o
jsonpath='{.status.loadBalancer.ingress[0].ip}')

echo $GWIP

On your Istio Control Plane
Join VMs to an Istio service mesh (Mesh Expansion)

https://istio.io/docs/concepts/security/
https://istio.io/docs/concepts/traffic-management/#pilot

30

 Define Envoy intercept ranges in cluster.env file

Generate a cluster.env file. The script in the current documentation is GCE specific and will fail
in a non-GCE deployment. This file contains the Kubernetes cluster IP address ranges to
intercept and redirect via Envoy. It also contains the ports of used by services hosts on

ISTIO_SERVICE_CIDR=10.96.0.0/12
ISTIO_SYSTEM_NAMESPACE=istio-system
ISTIO_CP_AUTH=MUTUAL_TLS
ISTIO_INBOUND_PORTS=3306,8080

Compose a few files to be deployed to expansion VMs
Mesh Expansion

31

Extract the initial keys the service account needs to use on the VMs (to files to be copied to
VMs).

kubectl -n $SERVICE_NAMESPACE get secret istio.default \
 -o jsonpath='{.data.root-cert\.pem}' |base64 --decode > root-cert.pem

kubectl -n $SERVICE_NAMESPACE get secret istio.default \
 -o jsonpath='{.data.key\.pem}' |base64 --decode > key.pem

kubectl -n $SERVICE_NAMESPACE get secret istio.default \
 -o jsonpath='{.data.cert-chain\.pem}' |base64 --decode > cert-chain.pem

Compose cert and key files to be deployed to expansion VMs
Mesh Expansion

32

Fetch and install Istio sidecar package

Install certificate files

Install cluster CIDR definition

Check connectivity

 Summary of steps
On each VM joining K8s mesh

33

Details if you “try this at home”
On each VM joining K8s mesh

From Kubernetes control plane host:

scp cluster.env root-cert.pem cert-chain.pem key.pem my-account@1my-vm:/tmp

From mesh expansion machine:

cd /tmp
curl -L https://storage.googleapis.com/istio-release/releases/1.3.5/deb/istio-sidecar.deb -o
istio-sidecar.deb
sudo dpkg -i istio-sidecar.deb
sudo mkdir -p /etc/certs
sudo cp {root-cert.pem,cert-chain.pem,key.pem} /etc/certs
sudo cp cluster.env /var/lib/istio/envoy

Transfer ownership of the files in /etc/certs/ and /var/lib/istio/envoy/ to the Istio proxy.

sudo chown -R istio-proxy /etc/certs /var/lib/istio/envoy

https://storage.googleapis.com/istio-release/releases/1.3.5/deb/istio-sidecar.deb

34

 On your Istio Control Plane:

 --set global.meshExpansion.enabled=true

 On your VM

Join an Istio Service Mesh
Legacy VM

35

echo “<GW_IP> istio-citadel istio-pilot istio-pilot.istio-system" | sudo tee
-a /etc/hosts

Verify the node agent works (note underscore):

sudo node_agent

“CSR is approved successfully. Will renew cert in 1079h59m59.84568493s”

Start Istio on VM using systemctl.

sudo systemctl start istio-auth-node-agent
sudo systemctl start istio

Verify Istio (envoy proxy) is running

sudo systemctl status istio

istio.service - istio-sidecar: The Istio sidecar
 Loaded: loaded (/lib/systemd/system/istio.service; disabled; vendor preset: e
 Active: active (running) since Wed 2019-07-17 22:38:05 UTC;

Mesh expansion VMs need to connect to citadel and pilot
Istio addresses must be in DNS

36

 On the VM, open a secondary command session (will be tied up running web server) and use
python to start an HTTP web server

 python -m SimpleHTTPServer 8080

Certs and Envoy sidecar binary
Run a service on mesh expansion machine

37

You can add VM services to the mesh using a service entry.

Service entries let you manually add additional services to Pilot’s abstract model of the mesh.

Once VM services are part of the mesh’s abstract model, other services can find and direct
traffic to them.

Each service entry configuration contains the IP addresses, ports, and appropriate labels of all
VMs exposing a particular service

enable service discovery for services on an expansion machine

What is a ServiceEntry?

https://istio.io/docs/reference/config/networking/v1alpha3/service-entry/

38

kubectl -n ${SERVICE_NAMESPACE} apply -f - <<EOF
apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: vmhttp
spec:
 hosts:
 - vmhttp.${SERVICE_NAMESPACE}.svc.cluster.local
 ports:
 - number: 8080
 name: http
 protocol: HTTP
 resolution: STATIC
 endpoints:
 - address: 192.168.99.129
 ports:
 http: 8080
 labels:
 app: vmhttp
 version: "v1“
EOF

enable service discovery for services on an expansion machine
Define a ServiceEntry

39

The workloads in a Kubernetes cluster need a mapping to resolve the domain names of VM
services. To integrate the mapping, use istioctl to register and create a Kubernetes selector-less
service:

istioctl register -n ${SERVICE_NAMESPACE} vmhttp 192.168.99.129 8080

2019-07-17T22:39:40.551948Z info No pre existing exact matching ports list found, created new subset
{[{192.168.99.129 <nil> nil}] [] [{http 8080 }]}

2019-07-17T22:39:40.557364Z info Successfully updated vmhttp, now with 1 endpoints

Using the Istio control plane, from the kubectl machine, not the VM
Map the service

40

The Istio sample directory has a spec for a helper pod with curl installed that sleeps until needed. Deploy
the pod in the Kubernetes cluster, and wait until it is ready:

kubectl apply -f samples/sleep/sleep.yaml

kubectl get pod

sleep-5fb55468cb-tkml7 2/2 Running 0 12s

We will use the pod to send a curl request from the sleep pod to the VM’s HTTP service - demonstrating
that the VM hosted service is exposed to potential consumers in Kubernetes via service mesh :

kubectl exec -it sleep-5fb55468cb-tkml7 -c sleep -- curl
vmhttp.${SERVICE_NAMESPACE}.svc.cluster.local:8080

Using the Istio control plane, from the kubectl machine, not the VM
Access the VM hosted service from Kubernetes

41

On a machine managing Kubernetes cluster, get the virtual IP address (clusterIP) for the service:

kubectl get svc productpage -o jsonpath='{.spec.clusterIP}'

10.104.202.166

On the mesh expansion machine (VM), add the service name and virtual IP address (clusterIP) for the service to its
etc/hosts file. You can then connect to the cluster service from the VM, as in the example below:

echo "10.104.202.166 productpage.default.svc.cluster.local" | sudo tee -a /etc/hosts

curl -v productpage.default.svc.cluster.local:9080

< HTTP/1.1 200 OK
< content-type: text/html; charset=utf-8
< content-length: 1836
< server: envoy
... html content ...

The “server: envoy” in the header indicates that envoy intercepted the traffic

Using the Istio control plane, from a kubectl host, not the VM
Sending requests from VM worldloads to Kubernetes

42

Envoy package is a .deb

.rpm has been done but not a release artifact at this time

no Windows support at this time

Istio mesh expansion has opportunities for enhancement
Limitations

