

Jean Rouge
Deep Debroy

Superpowers for Windows
Containers

Speakers

Agenda

❏Support for containers and Kubernetes on Windows

❏Windows containers and privileged operations

❏Privileged Proxies for Windows containers

❏Design of a Privileged Proxy for storage

❏Use cases of Privileged Proxies

❏Conclusion

Introduction to Windows Containers

Windows Containers in Kubernetes

Privileged Operations with Windows Containers

● Windows does not support container capabilities and privileges

● Containers cannot perform “privileged” operations on Windows:

○ Access and manage host registry

○ Manage host networking configuration

○ Access and manage storage drives on host

● Limited ability to act as Kubernetes DaemonSets

○ No native support for containerized CSI/CNI plugins

Workarounds for Privileged Operations

● Remote access into the host OS shell from a container

○ Containers need to know host address

○ Challenging to constrain access from Kubernetes

● Runtime class to launch a process from container image

○ Requires runtime enhancements on Windows

● Privileged proxy binary running on host

○ Focus of this presentation

Privileged Proxy for Windows Containers

● Regular binary on host performs privileged operations on

behalf of containers

○ Potentially configured as a Windows service

○ Surfaces named pipes and APIs

● Supported operations may be scoped to OS subsystems

● Operations can be validated against policies

Privileged Proxy Architecture

Windows Host OS

kubelet
.exe

dockerd
.exe

kubeproxy
.exe

privileged
proxy
.exe

Windows
containerWindows

containerWindows
container

Windows Pod

API

apiVersion: v1

kind: Pod

metadata:

 name: test-pod1

spec:

 nodeSelector:

 beta.kubernetes.io/os: windows

 containers:

 - name: container1

 image: org/image:tag

 volumeMounts:

 - name: proxy-pipe

 mountPath: \\.\pipe\proxy-pipe-1

 volumes:

 - name: proxy-pipe

 hostPath:

 path: \\.\pipe\proxy-pipe-1

 type: “”

Devices Storage Network Events

container

container

Privileged Proxy: Considerations

● Proxy binary will need to be deployed/maintained on host

○ Use host bring-up/preparation scripts

● Restrict access to named pipes surfaced by privileged proxy

○ Use Pod Security Policy and Service Accounts

○ Use custom webhook/OPA policies

Privileged Proxy: Access Control with PSP

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: deny-hostpath
spec:
 ...
 # Skip HostPath as allowed volume type
 volumes:
 - 'configMap'
 - 'emptyDir'
 - 'projected'
 - 'secret'
 - 'downwardAPI'
 - 'persistentVolumeClaim'
 ...

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: restricted-role
rules:
- apiGroups:

- extensions
 resources:
 - podsecuritypolicies
 verbs:

- use
 resourceNames:

- deny-hostpath

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: restricted-binding
roleRef:
 kind: ClusterRole
 name: restricted-role
 apiGroup: rbac.authorization.k8s.io
subjects:
Authorize all service accounts/users in all namespaces
- kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: system:serviceaccounts
- kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: system:authenticated

Privileged Proxy: Access Control with PSP

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: allow-hostpath
spec:
 ...
 # Add HostPath as allowed volume type
 volumes:
 - 'configMap'
 - 'emptyDir'
 - 'projected'
 - 'secret'
 - 'downwardAPI'
 - 'persistentVolumeClaim'
 - 'hostPath'
 ...

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: privileged-role
rules:
- apiGroups:

- extensions
 resources:
 - podsecuritypolicies
 verbs:

- use
 resourceNames:

- deny-hostpath

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: privileged-binding
roleRef:
 kind: ClusterRole
 name: privileged-role
 apiGroup: rbac.authorization.k8s.io
subjects:
Authorize service accounts in a privileged namespace
- kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: system:serviceaccounts:privileged-namespace

Privileged Proxy: Benefits

● Plugin/Distro vendors can distribute product and environment

specific binaries in Windows container images

○ While depending on community maintained proxies

● Operators can deploy, configure and maintain the life-cycle of

containerized plugins for Windows using native Kubernetes

constructs like Daemonsets

Privileged Proxy Use-Case: Storage

Legacy storage plugin models that support Windows nodes:

○ In-tree plugins compiled into Kubelet.exe

○ FlexVolume plugin scripts that Kubelet invokes on host

○ Direct access to host drives and volumes from

Kubelet/scripts running on host

Persistent Storage for Windows Today

Windows Host OS

kubelet
.exe

dockerd
.exe

Windows
containerWindows

containerWindows
container

Windows Pod

container

container

\\?\Volume{UUID} \\?\UNC\Server\Share

FlexVolume Script

Privileged Proxy Use-Case: Storage

Container Storage Interface (CSI) Node plugins

○ Implement the modern CSI spec [GA in 1.13]

○ Typically distributed as containerized binaries for Linux

○ Deployed in privileged pods on Linux nodes

○ Need a similar mechanism for Windows nodes

Privileged Storage Operations

Container Storage Interface (CSI) Node plugins need to:

○ Scan physical disk objects based on SCSI IDs

○ Partition a disk and create and format a partition

○ Mount SMB shares

○ Interact with iSCSI targets

CSI Proxy surfaces an API through named pipes to enable these

Privileged Proxy Use-Case: Storage

Windows Host OS

kubelet
.exe

dockerd
.exe

Windows
containerWindows

containerWindows
container

Windows Pod

container

container

\\?\Volume{UUID} \\?\UNC\Server\Share

CSI Node Pod

CSI Node Plugin

CSI Node Driver
Registrar

csi-proxy
.exe

Proxy API Versioning

The proxy needs to be easy to evolve & maintain:

○ Add new capabilities

○ Modify existing capabilities

○ Preserve backward-compatibility across release cycles

Proxy API Versioning

Same notion of API groups and versions as k8s itself uses:

○ Capabilities grouped by API groups

■ Disk, Volume, FileSystem, SMB, iSCSI

○ Each API group has one or several versions

○ Versions maintained then deprecated according to a

release schedule

Proxy API Versioning

Internally:

○ Each API group has a single internal representation for

all versioned objects, and a single server that handles all

versions for that group

○ Auto-generated code handles conversion from versioned

types to internal representations, creating named pipes...

Proxy API Versioning

v1alpha1.proto

internal types.go

golang
protobuf file
for v1alpha1

conversion.go
from v1alpha1
types to internal

v1alpha1.proto

v1.proto

golang
protobuf file
for v1alpha1

golang
protobuf file
for v1alpha1

API group’s
server.go

conversion.go
from v1alpha2
types to internal

conversion.go
from v1 types
to internal

v1alpha1’s
protobuf server

v1alpha2’s
protobuf server

v1’s protobuf
server

Proxy versions: deployment

● Cluster administrators need to make sure the right proxy

version is present on the nodes where they need them.

● Each version of CSI proxy maintains up to 12 months or 3

releases (whichever is longer) for each API group.

● Possible to run several versions of CSI proxy on the same

host.

CSI-Proxy Demo

Other Privileged Proxy Use Cases

● Container Network Interface (CNI) plugins

○ With community maintained proxy for HNS API calls

● DaemonSet for node monitoring and diagnostics

○ With community maintained proxy for collecting host

Event Logs, ETW traces and other log sinks.

Future Directions

● Configurable set of proxies loaded by Kubelet

○ Eases life-cycle management of proxy binaries

● Native support for privileged containers on Windows

Q&A

Thank you!

Q&A

