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Introduction to Windows Containers



Windows Containers in Kubernetes



Privileged Operations with Windows Containers

● Windows does not support container capabilities and privileges

● Containers cannot perform “privileged” operations on Windows:

○ Access and manage host registry

○ Manage host networking configuration

○ Access and manage storage drives on host

● Limited ability to act as Kubernetes DaemonSets

○ No native support for containerized CSI/CNI plugins



Workarounds for Privileged Operations

● Remote access into the host OS shell from a container

○ Containers need to know host address

○ Challenging to constrain access from Kubernetes

● Runtime class to launch a process from container image

○ Requires runtime enhancements on Windows

● Privileged proxy binary running on host

○ Focus of this presentation



Privileged Proxy for Windows Containers

● Regular binary on host performs privileged operations on 

behalf of containers

○ Potentially configured as a Windows service

○ Surfaces named pipes and APIs

● Supported operations may be scoped to OS subsystems 

● Operations can be validated against policies



Privileged Proxy Architecture
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apiVersion: v1

kind: Pod

metadata:

 name: test-pod1

spec:

 nodeSelector:

   beta.kubernetes.io/os: windows

 containers:

 - name: container1

   image: org/image:tag

   volumeMounts:

   - name: proxy-pipe

     mountPath: \\.\pipe\proxy-pipe-1

 volumes:

   - name: proxy-pipe

     hostPath:

       path: \\.\pipe\proxy-pipe-1

       type: “”
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Privileged Proxy: Considerations

● Proxy binary will need to be deployed/maintained on host

○ Use host bring-up/preparation scripts 

● Restrict access to named pipes surfaced by privileged proxy

○ Use Pod Security Policy and Service Accounts

○ Use custom webhook/OPA policies



Privileged Proxy: Access Control with PSP

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: deny-hostpath
spec:
  ...
  # Skip HostPath as allowed volume type
  volumes:
    - 'configMap'
    - 'emptyDir'
    - 'projected'
    - 'secret'
    - 'downwardAPI'
    - 'persistentVolumeClaim'
 ...

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: restricted-role
rules:
- apiGroups: 

- extensions
  resources: 
     - podsecuritypolicies
  verbs:

- use
  resourceNames:

- deny-hostpath

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: restricted-binding
roleRef:
  kind: ClusterRole
  name: restricted-role
  apiGroup: rbac.authorization.k8s.io
subjects:
# Authorize all service accounts/users in all namespaces
- kind: Group
  apiGroup: rbac.authorization.k8s.io
  name: system:serviceaccounts
- kind: Group
  apiGroup: rbac.authorization.k8s.io
  name: system:authenticated



Privileged Proxy: Access Control with PSP

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
  name: allow-hostpath
spec:
  ...
  # Add HostPath as allowed volume type
  volumes:
    - 'configMap'
    - 'emptyDir'
    - 'projected'
    - 'secret'
    - 'downwardAPI'
    - 'persistentVolumeClaim'
    - 'hostPath'
 ...

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: privileged-role
rules:
- apiGroups: 

- extensions
  resources: 
     - podsecuritypolicies
  verbs:

- use
  resourceNames:

- deny-hostpath

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: privileged-binding
roleRef:
  kind: ClusterRole
  name: privileged-role
  apiGroup: rbac.authorization.k8s.io
subjects:
# Authorize service accounts in a privileged namespace
- kind: Group
  apiGroup: rbac.authorization.k8s.io
  name: system:serviceaccounts:privileged-namespace



Privileged Proxy: Benefits

● Plugin/Distro vendors can distribute product and environment 

specific binaries in Windows container images

○ While depending on community maintained proxies

● Operators can deploy, configure and maintain the life-cycle of 

containerized plugins for Windows using native Kubernetes 

constructs like Daemonsets



Privileged Proxy Use-Case: Storage

Legacy storage plugin models that support Windows nodes:

○ In-tree plugins compiled into Kubelet.exe

○ FlexVolume plugin scripts that Kubelet invokes on host

○ Direct access to host drives and volumes from 

Kubelet/scripts running on host



Persistent Storage for Windows Today
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Privileged Proxy Use-Case: Storage

Container Storage Interface (CSI) Node plugins

○ Implement the modern CSI spec [GA in 1.13]

○ Typically distributed as containerized binaries for Linux

○ Deployed in privileged pods on Linux nodes

○ Need a similar mechanism for Windows nodes



Privileged Storage Operations

Container Storage Interface (CSI) Node plugins need to:

○ Scan physical disk objects based on SCSI IDs 

○ Partition a disk and create and format a partition

○ Mount SMB shares

○ Interact with iSCSI targets

CSI Proxy surfaces an API through named pipes to enable these



Privileged Proxy Use-Case: Storage
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Proxy API Versioning

The proxy needs to be easy to evolve & maintain:

○ Add new capabilities

○ Modify existing capabilities

○ Preserve backward-compatibility across release cycles



Proxy API Versioning

Same notion of API groups and versions as k8s itself uses:

○ Capabilities grouped by API groups 

■ Disk, Volume, FileSystem, SMB, iSCSI

○ Each API group has one or several versions

○ Versions maintained then deprecated according to a 

release schedule



Proxy API Versioning

Internally:

○ Each API group has a single internal representation for 

all versioned objects, and a single server that handles all 

versions for that group

○ Auto-generated code handles conversion from versioned 

types to internal representations, creating named pipes...



Proxy API Versioning
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Proxy versions: deployment 

● Cluster administrators need to make sure the right proxy 

version is present on the nodes where they need them.

● Each version of CSI proxy maintains up to 12 months or 3 

releases (whichever is longer) for each API group.

● Possible to run several versions of CSI proxy on the same 

host.



CSI-Proxy Demo



Other Privileged Proxy Use Cases

● Container Network Interface (CNI) plugins

○ With community maintained proxy for HNS API calls

● DaemonSet for node monitoring and diagnostics

○ With community maintained proxy for collecting host 

Event Logs, ETW traces and other log sinks.



Future Directions

● Configurable set of proxies loaded by Kubelet

○ Eases life-cycle management of proxy binaries

● Native support for privileged containers on Windows
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