
Igor Sfiligoi, University of California San Diego (UCSD/SDSC)

Serving HTC Users in K8s 
by Leveraging HTCondor



Who am I?

Longtime HTC user
• Most recently as part of the

Open Science Grid (OSG)

For the past year actively involved with Kubernetes
• As part of the 

Pacific Research Platform (PRP)

Name: Igor Sfiligoi
Employer: UC San Diego

https://opensciencegrid.org

http://pacificresearchplatform.org

2

https://opensciencegrid.org/
http://pacificresearchplatform.org/


Let’s define HTC

HTC = High Throughput Computing

Often also called Batch Computing
(although not all Batch Computing is HTC)

3



Let’s define HTC

HTC = High Throughput Computing

Often also called Batch Computing
(although not all Batch Computing is HTC)

The infrastructure for Ingenuously Parallel Computing

4



Ingenious Parallelism

• Restate a big computing problem as 
many individually schedulable small problems.

• Minimize your requirements in order to 
maximize the raw capacity that you can effectively use.

5



Ingenious Parallelism

• Restate a big computing problem as 
many individually schedulable small problems.

• Minimize your requirements in order to 
maximize the raw capacity that you can effectively use.

Some call it 
Embarrassingly Parallel Computing

but it really takes hard thinking!

6



Example HTC problems

Monte Carlo Simulations
Parameter sweeps
Event processing
Feature extraction

And many more problems can be cast in this paradigm.

7



Example HTC resource

Open Science Grid (OSG)
operates a large scale HTC pool

Number of CPU cores in use by OSG HTC jobs

8



Example HTC users

OSG serving 
many different
scientific domains

Weekly CPU hours used by OSG HTC jobs

9



HTC and Kubernetes

Can we use Kubernetes
for HTC?

10



K8s in principle great for HTC

One HTC job per Pod

Job n
Job n

Job n

Job 3
Job 2

Job 1

…

Many Pods per HW node

Job a

…

Job z

Many HW nodes per Pool

VPN Overlay

Shared
Storage

Flexible
Orchestration

11



K8s in practice not so great

• Indexed parameter passing

• Automatic Input/Output handling
Note: HTC jobs typically do not require a shared FS

• Fair Share Scheduling policies
Essential for highly contested resources

• Can it scale to millions of queued Pods?

K8s missing a few features HTC users are used to

12



K8s in practice not so great

• Indexed parameter passing

• Automatic Input/Output handling
Note: HTC jobs typically do not require a shared FS

• Fair Share Scheduling policies
Essential for highly contested resources

• Can it scale to millions of queued Pods?

K8s missing a few features HTC users are used to

Plus, lack of:
• A familiar API/CLI
• Seamless integration

with other resources

13



HTC and Kubernetes

How about leveraging 
HTCondor with K8s?

14



Using HTCondor with Kubernetes

Why HTCondor?
• One of the major batch systems
• HTC-focused architecture
• Very flexible, often used in heterogeneous environments
• Native support for containers

15



Using HTCondor with Kubernetes

Why HTCondor?
• One of the major batch systems
• HTC-focused architecture
• Very flexible, often used in heterogeneous environments
• Native support for containers

The system used inside
the Open Science Grid

(OSG)

16



HTCondor Architecture

Persistent Job Queue
(can be more than one, but all independent) 

Schedd

Submission typically local
(e.g. ssh) Collector

Central manager for bookkeeping
(can have multiple for HA)

Startd

CPU

Startd

CPU

Startd

CPU

Each execute resource 
has a control process

17



HTCondor Architecture

Persistent Job Queue
(can be more than one, but all independent) 

Schedd

Submission typically local
(e.g. ssh) Collector

Requirements based matchmaking

Startd

CPU

Startd

CPU

Startd

CPU

Each execute resource 
has a control process

Negotiator

Central manager for bookkeeping
(can have multiple for HA)

Direct communication with
execute node

Fair share
allocations
(User and/or group 
based)

Includes
data transfers

18



HTCondor Architecture

Persistent Job Queue
(can be more than one, but all independent) 

Schedd

Submission typically local
(e.g. ssh) Collector Startd

CPU

Startd

CPU

Startd

CPU

Each execute resource 
has a control process

Negotiator

Central manager for bookkeeping
(can have multiple for HA)

Direct communication with
execute node

Match valid for 
tens of minutes, 
can be used for 

many jobs
Requirements based matchmaking

Fair share
allocations
(User and/or group 
based)

Includes
data transfers

19



Using HTCondor with Kubernetes

The Kubernetes resources can be joined to
an existing HTCondor Pool 

Pod

Startd

CPU

Schedd

Collector

Negotiator

No 
persistency 

needed

Using CCB for 
NAT traversal

20



Using HTCondor with Kubernetes

Or a complete HTCondor Pool can be created
inside Kubernetes

Pod

Startd

CPU

Schedd

Collector

Negotiator

Needs 
persistent 

storage

Persistent 
storage 

recommended

Simpler setup
due to VPN

21



Using HTCondor with Kubernetes

Can be used to join
external resources for
K8s users

Pod

Startd

CPU
Schedd

Collector

Negotiator Pod

Startd

CPU

Needs 
incoming 

networking

22



HTC Users and Containers

Most HTC jobs are application + arguments + data
• Container just a convenient way to package the dependencies
• Usually a department/community maintained one

23



HTCondor and Containers

HTCondor allows for a container to be attached to a job
• Will use singularity to invoke it
• After binding the application and data

Most HTC jobs are application + arguments + data
• Container just a convenient way to package the dependencies
• Usually a department/community maintained one

24



HTCondor and Containers

HTCondor allows for a container to be attached to a job
• Will use singularity to invoke it
• After binding the application and data

Most HTC jobs are application + arguments + data
• Container just a convenient way to package the dependencies
• Usually a department/community maintained one

In principle Docker could be an 
option, but not currently 

supported

25



Nested containerization

Singularity can be invoked inside a Docker container
• Fully unprivileged with Linux Kernel >= 4.18

Makes HTCondor execute in Kubernetes trivial to implement 

Schedd

Pod – CentOS/Ubuntu/…
with Singularity

Startd

Singularity – Dept.Cont.

Application

Dept.Cont. + Appl. + Args. + InData

OurData + Logs

26



Explicit provisioning
Many systems still on older Linux Kernel Versions (e.g. CentOS 7)
• Unprivileged nested containerization not an option there
Some users also do not like singularity
• It does have some differences from Docker
• e.g. The root partition is always Read-Only

Kubernetes Pod can be launched with Container needed by User jobs
• Only jobs needing that Container will match
• Asking users to create a HTCondor-specific Container

usually a non-starter
• Better to inject HTCondor bins and config at Pod startup

A ready-to-use template available at:
https://github.com/sfiligoi/prp-htcondor-pool

Quite effective 
when only a few 
Container Images 

needed

27

https://github.com/sfiligoi/prp-htcondor-pool


Opportunistic use

Most HTC jobs tolerate preemption
• HTC Pods great backfill option for keeping 

your Kubernetes resources fully utilized

Just launch HTCondor execute Pods with a very low K8s priority

Works best when you have a single backfill pool

28



To conclude

Kubernetes is a great foundation platform for HTC jobs
• But a bit hard to use by itself

HTCondor can add the needed glue to make it easy to use
• Data handling
• Parametrized argument passing
• Robust, contention-optimized and scalable policy manager

OSG and PRP have been successfully using this combination for awhile

29



Acknowledgments

This work was partially funded by 
US National Science Foundation (NSF) awards 
CNS-1456638, CNS-1730158, 
ACI-1540112, ACI-1541349, 
MPS-1148698, 
OAC-1826967, OAC 1450871, 
OAC-1659169 and OAC-1841530.

30


