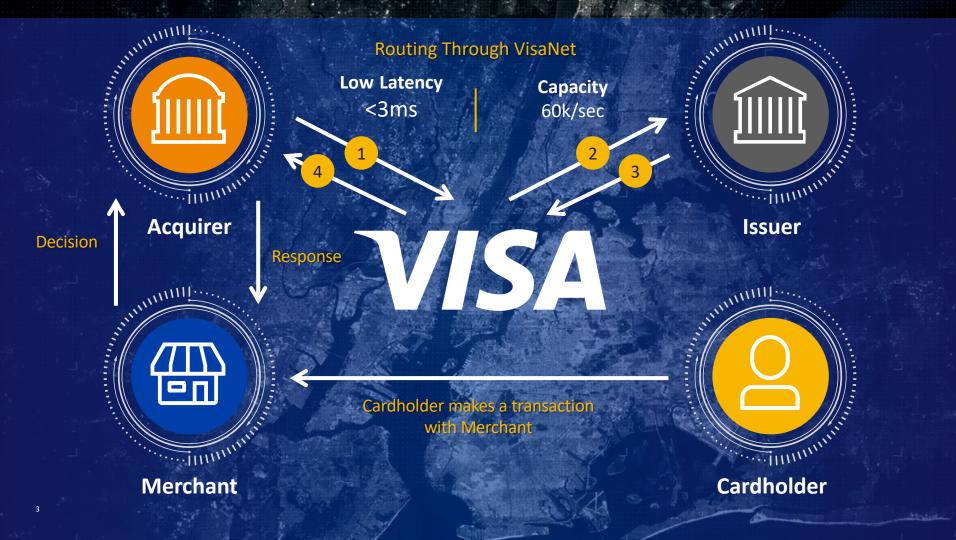


KubeCon CloudNativeCon

North America 2019

Security Beyond Buzzwords: How to secure Kubernetes with empathy?

Pushkar Joglekar, Security Engineer, Visa Inc.



A global payments **technology company** that connects consumers, businesses, financial institutions and governments in more than 200 countries and territories, enabling them to use electronic **payments** instead of cash and checks.

What we are not:

- Credit card issuers
- A Bank or lender
- Exposed to consumer credit risk

>whoami

- Architecting "secure by design" container deployments @ Visa

- Individual Open Source contributor for Visa

- Co-Author (Security): "The Kubernetes Book" with Nigel Poulton

- Certified Kubernetes Application Developer and Docker Certified Associate

- Concluded that Chai > Boba

Twitter: @pudijoglekar

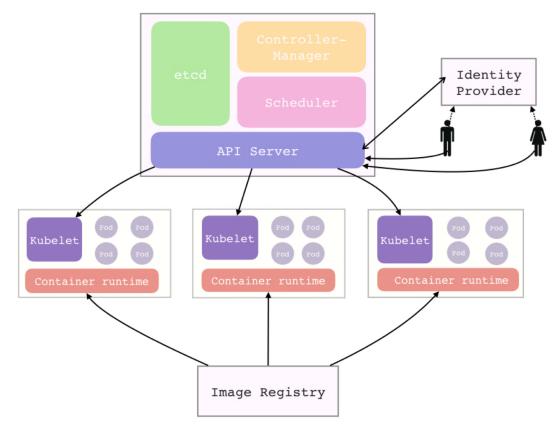
Disclaimers

- "Point of view" of security team, engineer or architect
- We/Us == Security teams
- They/Them == Operations, Product teams, Developers
- Assumes there is a dedicated person, team, organization who is "accountable" for security
- Everyone else is "responsible" for security

Ref: https://imgflip.com/memegenerator/Brace-Yourselves-X-is-Coming

VISA

Hopefully, not Day 0, but...


- Ensure visibility, clearly documenting unknowns
- Do some basic checks
- Ask them what they are doing about security
- Clarify that we will come back with more recommendations
- Request to start small with business non-critical apps

< Day 0 - Threat model

- S: Spoofing
- T: Tampering
- **R**: Repudiation
- I: Information Disclosure
- D: Denial of Service
- E: Elevation of Privilege

< Day 0 – Data Flows

< Day 0 - TM- Spoofing

- Kubernetes components communicate via mTLS and encryption via self-managed CAs
- Ensure this CA is trusted only within the cluster
- Pod to Pod communication:
 - Un-authenticated by default
 - Enable mTLS
 - Educate developers about this
- Do pods "really" need service account tokens?
- MFA for Admins and host access

```
apiVersion: v1
kind: Pod
metadata:
  name: service-account-example-
pod
spec:
  serviceAccountName: some-
service-account
  automountServiceAccountToken:
false
<snip>
```

< Day 0 – TM - Tampering

At-rest Auditing, Sign and Verify In-transit

TLS

In-memory Restricted access

```
readOnlyRootFilesystem: true
allowedHostPaths:
   pathPrefix: "/foo"
      readOnly: true # only allow read-only mounts
<snip>
```

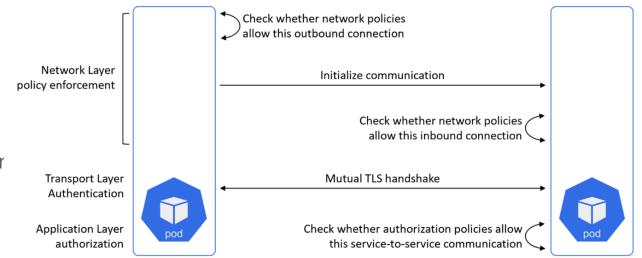
< Day 0 – TM – (Non-) Repudiation

- Who, Where, When, What, How, Why?
- API auditing
- Log forwarding
- Linux audit
- Audit other K8s components e.g. kubelet, etcd, container runtime

```
"kind":"Event",
"apiVersion":"audit.k8s.io/v1",
"metadata":{ "creationTimestamp":"2019-03-03T10:10:00Z" },
"level":"Metadata",
"timestamp":"2019-03-03T10:10:00Z",
"auditID":"7e0cbccf-8d8a-4f5f-aefb-60b8af2d2ad5",
"stage":"RequestReceived",
```

```
"requestURI":"/api/v1/namespaces/default/persistentvolumeclaims",
    "verb":"list",
    "user": {
        "username":"fname.lname@example.com",
        "groups":["system:authenticated"]
    },
    "sourceIPs":["123.45.67.123"],
    "objectRef": {
        "resource":"persistentvolumeclaims",
        "namespace":"default",
        "apiVersion":"v1"
    },
    "requestReceivedTimestamp":"2010-03-03T10:10:00.123456Z",
    "stageTimestamp":"2019-03-03T10:10:00.123456Z"
```

```
<snip>
```


< Day 0 – TM - Information Disclosure

- Exposure of sensitive data, files, strings a.k.a. secrets
- Restrict host access
- Kubernetes secrets:
 - Encoding is *not* encryption
 - Use KMS plugins
 - Key and data in the same node is *never* a good idea
- Images, ConfigMaps, yaml files are not a good place to store secrets

< Day 0 – TM - Denial of Service

- -More than one manager node
- −More than one worker point node
- Network segregation of manager and worker nodes
- -Resource quotas
- Pod level:
 - -Requests and limits
 - -Mutual AuthN
 - -AuthZ policies

< Day 0 – TM - Elevation of Privilege

• Cluster level:

–Node: Kubelet

-Role Based Access Control: for everything else

-Roles mapped to user groups

• Pod level:

-Not running as root

-Seccomp (Syscall filtering)

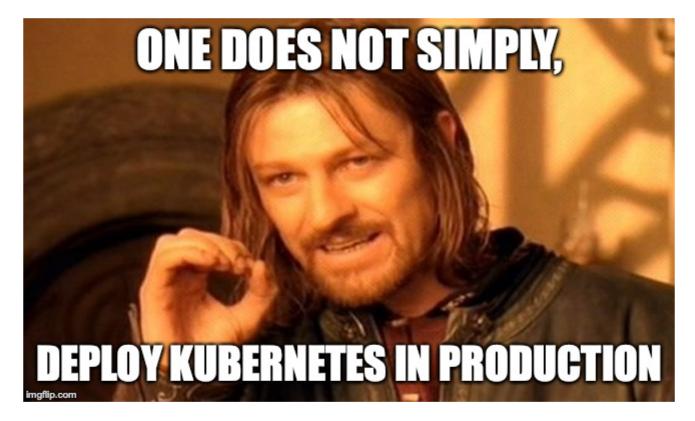
-Linux capabilities

-Mandatory access controls e.g. SELinux, AppArmor

-allowPrivilegeEscalation: false

< Day 0 - Controls gap analysis

Controls Gap = Total Threats - Control(threats)


Where, Control(threats) = Mitigated Threats

This is where security products are "born"

< Day 0 - Open discussion

- Share the results with Dev and Ops teams
- Request for feedback and adjust what makes sense
- Dev and Ops teams will appreciate if you share a security issue
 - Even better, if security team fixes it
- Share why something is a security issue
- Have external references that support the threat identified

Day 1

Day 1 - Don't be a checklist bot!

- Ensure the security controls are applied and *work* as expected.
- Few examples:
 - Auditing Alerting = useless
 - Permissive(SELinux) = useless
 - mTLS + Compromised(CA)
 - Default((Privileged)PSP)

- = useless
- = useless

Day 1- Be practical

- Every rule has an exception
- Sometimes rules cannot be applied for valid reasons
- Understand the use-cases
- Consider compensating controls:
 Q: Need to run an app as privileged or mount the docker socket?
 A: Run on a dedicated cluster

Day 1 - Automate

Problem	Solution
Vulnerable container images	Scanner in CI/CD pipeline
Lack of isolation of pods	PSPs that follow 80/20 rule
Unrestricted network access	Label based network security policies
Lack of awareness of user actions	Audit and Centralize API server auditing

Ref: https://imgflip.com/memegenerator/13026863/TOYSTORY-EVERYWHERE

- Securing Kubernetes does not end after the cluster is built or the first pod is deployed
- It ends only when there are no more Kubernetes clusters in your cloud
- Like all software (and hardware), there will always be vulnerabilities

Day 2 – Not all vulnerabilities are equal

Risk != Severity

Day 2 – Not all vulnerabilities are equal

Risk = likelihood X Severity

Day 2 - CVE-2019-5736

SEVERITY: **HIGH**

Allows attackers to overwrite the host runc binary (and consequently obtain host root access) by leveraging the ability to **execute a command as root** within one of these types of containers:

(1) a new container with an attacker-controlled image, or

(2) an existing container:

- Which the attacker previously had write access to
- Can be attached with docker exec

Ref: https://nvd.nist.gov/vuln/detail/CVE-2019-5736

Day 2 - CVE-2019-5736

- Determining the likelihood of a vulnerability being exploited is hard
- Assume attacks will be attempted
- Can existing security controls make an attack unlikely to be successful?
- How many such security controls exist?
- How confident are we on the controls doing what's expected?

<u>*Pro Tip:*</u> Understand the pre-requisites of the threat

Day 2 - CVE-2019-5736

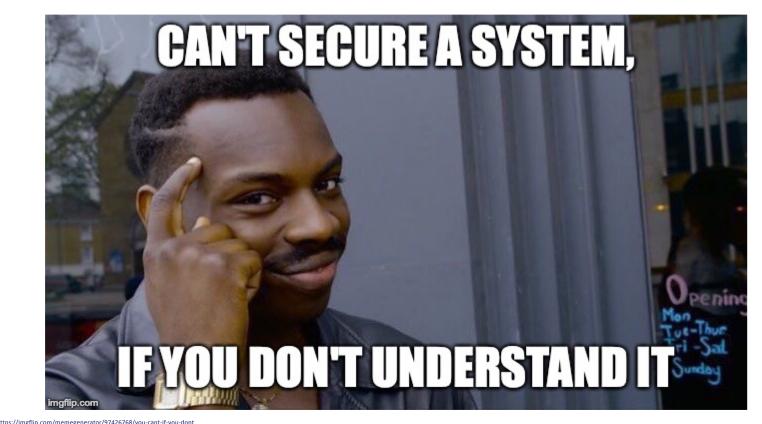
Controls that make the attack difficult to be successful or go undetected:

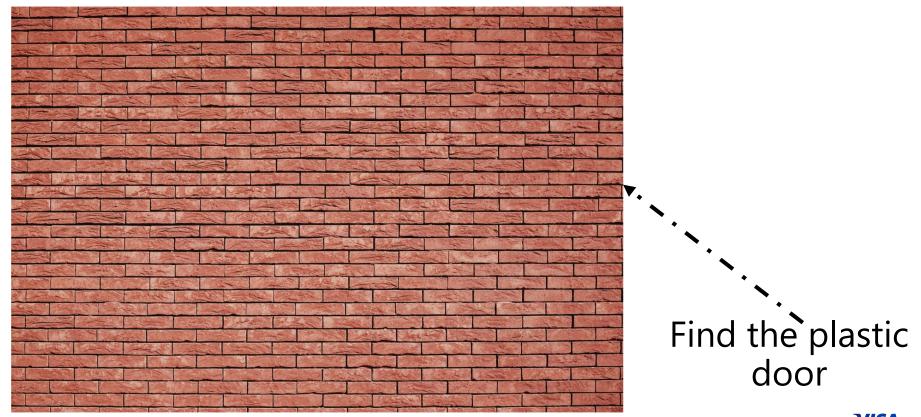
- Vulnerability scanning of images
- Gated release process for production images
- Host level controls: SELinux
- Not running containers as root
- Auditing of container runtimes

Day 2 – K8s security audit

No. Hic	Severity/ Difficulty	Low	Medium	High	Undetermined
^{Ris}	High				
2	Medium	1 (ТМ 07)	5 (TM 1, 2, 3, 4, 14)		
3	Low			8 (TM 5, 6, 8, 11, 13, 15, 16, 17)	
4	Very low			2 (TM 9, 10)	
5	Informational				1 (TM 12) Low Risk

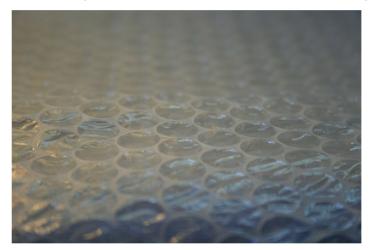
Day 2 – K8s security audit


No. Hig	Severity/ Difficulty	Low	Medium	High	Undetermined	N/A
Risl 1	High	1 (ТОВ-К8ѕ-038)	2 (ТОВ-К8S-028, ТОВ-К8S- 034)	2 (TOB-K8S-022, ATR-K8S-001)		
2	Medium	4 (TOB-K8S-015, TOB- K8S-020, TOB-K8S- 021, TOB-K8S-026)	4 (TOB-K8s-001, TOB-K8S- 002, ATR-K8S-002, TOB- K8S-024)	9 (TOB-K8S-004, TOB-K8S-005, TOB-K8S- 012, TOB-K8S-013, TOB-K8S-014, TOB- K8S-019, TOB-K8S-029, TOB-K8S-031, ATR-K8S-003)		
3	Low	1 (TOB-K8S-006)	2 (ТОВ-К8S-036, ТОВ-К8S- 032)	5 (TOB-K8S-007, TOB-K8S-008, TOB-K8S- 016, TOB-K8S-023, TOB-K8S-033)		
4	Informational	1 (TOB-K8S-009)		З (тов-к85-017, тов-к85-010, тов-к85- 003)	2 (тов-к85-027, тов-к85- 037)	


Day 2 - Revisit threat model

- With newer versions of Kubernetes, things will change
- Revisit the threat model and assumptions
- Expect multi-tenancy support and secure defaults to get better
- More layers and defense in depth is key

Empathetic security is a reality!



Empathetic security is a reality!

Ref: https://unsplash.com/photos/t4DuoDHixrO

Empathetic security is a reality!

NOT A

BE A

We're hiring!

https://usa.visa.com/careers.html

Come work with us

Join a team that believes in making a difference in the world.

You're an individual. We're the team for you.

security engineering Cyber Secu	rity	United States	▼ Foster C	lity 🔹	
Search >					
Job Title	Job Category	Туре	Location	Date 💌	
Director, Cybersecurity Engineering	Cyber Security	Full-time	Foster City, CA, US	10/14/2019	
Staff Machine Learning Engineer - Security Engineering	Cyber Security	Full-time	Foster City, CA, US	09/12/2019	
Staff Software Engineer - Security Engineering	Cyber Security	Full-time	Foster City, CA, US	08/05/2019	

Questions?

Thank you