
Scaling resilient systems:
a journey into Slack's
database service
Rafael Chacón
Guido Iaquinti

guido.iaquinti.com

SPEAKERS

Rafael Chaon

he/him/his

Staff Software Engineer - Slack

twitter.com/rafaelchacon

Guido Iaquinti

he/him/his

Site Reliability Engineer - Freelance

twitter.com/guidoiaquinti

https://guido.iaquinti.com
https://twitter.com/rafaelchacon
https://twitter.com/guidoiaquinti

Agenda 1. Databases at Slack

2. Running databases in the cloud

3. Fault tolerance & Isolation

4. Key Lessons

5. Q&A

Slack’s mission is to
make people’s
working lives simpler,
more pleasant, and
more productive.

MISSION STATEMENT

Databases at Slack

Current
status

DATABASES AT SLACK

Two main types of clusters:

● Legacy shards
● Vitess shards

In progress
migration of our
entire dataset to
Vitess.

Why are we
migrating?

DATABASES AT SLACK

For more details
please see the
presentations on
the side.

tl;dr; shard size limits, inefficient resource
distribution, operational overhead, single sharding
model

● “Migrating to Vitess at (Slack) Scale” - Mike Demmer

● “Designing and launching the next-generation
database system at Slack: from whiteboard to
production” - Guido Iaquinti

● “Smooth scaling: Slack’s journey toward a new
database” - Ameet Kotian

https://www.percona.com/live/18/sessions/migrating-to-vitess-at-slack-scale
https://www.percona.com/live/18/sessions/designing-and-launching-the-next-generation-database-system-slack-from-whiteboard-to-production
https://www.percona.com/live/18/sessions/designing-and-launching-the-next-generation-database-system-slack-from-whiteboard-to-production
https://www.percona.com/live/18/sessions/designing-and-launching-the-next-generation-database-system-slack-from-whiteboard-to-production
https://conferences.oreilly.com/velocity/vl-ny/public/schedule/detail/69885
https://conferences.oreilly.com/velocity/vl-ny/public/schedule/detail/69885

Legacy
shards

DATABASES AT SLACK

Application level
team-sharded active
master-master
MySQL setup.

Master A Master B

Replica A Replica B

optional replicas

Vitess
shards

DATABASES AT SLACK

Master-replica
MySQL setup fully
managed by Vitess.

Master

Replica A Replica B Replica C

Stats

DATABASES AT SLACK

Queries per day: 53+ billion

Storage provisioned: 7.5+ PB

Served by legacy infrastructure: ~60%

Served by Vitess: ~40%

Target: 70% served by Vitess by EOY

Running
databases
in the cloud

Variable
infrastructure

RUNNING DATABASES IN THE CLOUD

Variable
infrastructure

RUNNING DATABASES IN THE CLOUD

Variable
infrastructure

RUNNING DATABASES IN THE CLOUD

Variable
infrastructure

RUNNING DATABASES IN THE CLOUD

Immutable
infrastructure

● Instances are untouched after
provisioning

● Configuration changes
happen only through
reprovisioning

● No in-place patching allowed

RUNNING DATABASES IN THE CLOUD

Instance failure

The airplane analogy

RUNNING DATABASES IN THE CLOUD

Instance failure

Always reprovision: challenges

RUNNING DATABASES IN THE CLOUD

● Network storage VS ephemeral instance
storage
○ Network storage: stop & start instance
○ Instance storage: download the latest backup

(NIC is the bottleneck)

● Small shards VS big shards
○ Recovery time (if you don’t use network

storage)
○ Blast radius
○ Distributed workload VS centralized workload
○ Less contention

Durability
through
replication

via semi-sync

RUNNING DATABASES IN THE CLOUD

Durability
through
replication

via semi-sync

RUNNING DATABASES IN THE CLOUD

rpl_semi_sync_master_timeout = 9999999999999

rpl_semi_sync_master_wait_no_slave = 1

sync_binlog = OFF

innodb_flush_log_at_trx_commit = 2

RUNNING DATABASES IN THE CLOUD

How we run
Vitess

● AWS

RUNNING DATABASES IN THE CLOUD

How we run
Vitess

● AWS

● EC2 not k8s

https://twitter.com/kelseyhightower/status/963413508300812295

RUNNING DATABASES IN THE CLOUD

How we run
Vitess

● AWS

● EC2 not k8s

● ASG for stateless
components

RUNNING DATABASES IN THE CLOUD

How we run
Vitess

● AWS

● EC2 not k8s

● ASG for stateless
components

● MySQL 5.7 (Percona)

How we run
Vitess

● AWS

● EC2 not k8s

● ASG for stateless
components

● MySQL 5.7 (Percona)

● Ephemeral NVMe (no EBS)

RUNNING DATABASES IN THE CLOUD

Fault tolerance &
isolation

Vitess
architecture

FAULT TOLERANCE & ISOLATION

Vitess
standard
deployment

FAULT TOLERANCE & ISOLATION

Slack cloud
infrastructure

● Amazon EC2 is hosted in multiple locations
world-wide.

● These locations are composed of Regions
and Availability Zones (AZ’s).

● Each Region is a separate geographic area.

● AZ’s in a Region are connected through
low-latency links.

 source https://docs.aws.amazon.com/

FAULT TOLERANCE & ISOLATION

https://docs.aws.amazon.com/

Vitess initial
deployment

FAULT TOLERANCE & ISOLATION

● We now have multiple
clusters in different
regions.

Vitess initial
deployment

FAULT TOLERANCE & ISOLATION

● We use Consul

Vitess initial
deployment

● We use Consul

● Notice default
datacenter (dc) in
Consul.

FAULT TOLERANCE & ISOLATION

Vitess initial
deployment

FAULT TOLERANCE & ISOLATION

● Single cell.

Vitess initial
deployment

FAULT TOLERANCE & ISOLATION

● Single cell.

● Same Consul dc:
default.

Vitess initial
deployment

FAULT TOLERANCE & ISOLATION

● Single cell.

● Same Consul dc:
default.

● vtgates/tablets in
different AZ’s.

Vitess initial
deployment

FAULT TOLERANCE & ISOLATION

● A single cell across
multiple AZ’s
(fundamental).

● Global and local
topology using the
same Consul cluster
(circumstantial).

Vitess initial
deployment

FAULT TOLERANCE & ISOLATION

Vitess initial
deployment

FAULT TOLERANCE & ISOLATION

https://twitter.com/mistermysql/status/1196222007760670720

We fixed
things!

FAULT TOLERANCE & ISOLATION

● Defensive programming.

● Fixing bugs.

Problem

FAULT TOLERANCE & ISOLATION

Surfaced a fundamental issue
in our deployment.

Resilient
systems

FAULT TOLERANCE & ISOLATION

● Minimize the blast
radius.

● Isolation is key.

● Understand your
dependencies.

Current
deployment

Easy right?

FAULT TOLERANCE & ISOLATION

Current
deployment

Easy right?

FAULT TOLERANCE & ISOLATION

Current
deployment

● Isolated topologies
(one dc for each AZ
and one for the global
topo).

● Blast radius is mapped
to physical
infrastructure.

FAULT TOLERANCE & ISOLATION

We have
benefited
already

FAULT TOLERANCE & ISOLATION

● AZ failure during
backup time.

● Single cell was
affected!

Performance
wins

FAULT TOLERANCE & ISOLATION

Key Lessons

A Short Treatise on the Nature of Failure; How Failure is Evaluated; How
Failure is Attributed to Proximate Cause; and the Resulting New

Understanding of Patient Safety - Richard I. Cook, MD (2000)

Complex
system
failures

KEY LESSONS

● Complex systems are intrinsically dangerous
systems.

● Complex systems are heavily and successfully
defended against failure.

● Catastrophe is always just around the corner.

● Complex systems contain changing mixtures of
failures latent within them.

Complex
system
failures

KEY LESSONS

Humility towards complexity.

Reach out to other fields and learn from their
experience.

🙏

Thank you!

P.S. We are hiring!

http://slack.com/jobs

Q&A

https://twitter.com/mistermysql/status/1196237057191841792

Thank you!

P.S. We are hiring!

http://slack.com/jobs

Appendix

Vitess
configuration

Here are some of the configuration
settings that we use in our setup.

They are the result of several years
of tuning. We are sharing them so
that the community can benefit as
well.

APPENDIX

./vtgate
 -buffer_size 10000
 -discovery_high_replication_lag_minimum_serving 5m
 -discovery_low_replication_lag 30s
 -enable_buffer
 -gateway_implementation discoverygateway
 -gateway_initial_tablet_timeout 120s
 -grpc_initial_conn_window_size 1073741824
 -grpc_initial_window_size 1073741824
 -grpc_keepalive_time 10s
 -grpc_keepalive_timeout 10s
 -grpc_server_initial_conn_window_size 1073741824
 -grpc_server_initial_window_size 1073741824
 -min_number_serving_vttablets 2
 -mysql_server_query_timeout 60s
 -mysql_server_read_timeout 60s
 -mysql_server_write_timeout 60s
 -normalize_queries
 -service_map grpc-vtgateservice
 -srv_topo_cache_refresh 5s
 -srv_topo_cache_ttl 8760h
 -tablet_refresh_interval 60s
 -tablet_refresh_known_tablets=false
 -tablet_types_to_wait MASTER,REPLICA
 -topo_read_concurrency 1
 -transaction_mode MULTI

Vitess
configuration

Here are some of the configuration
settings that we use in our setup.

They are the result of several years
of tuning. We are sharing them so
that the community can benefit as
well.

APPENDIX

./vttablet
 -binlog_use_v3_resharding_mode
 -degraded_threshold 30s
 -enable-autocommit
 -enable_replication_reporter
 -enable_semi_sync
 -grpc_initial_conn_window_size 1073741824
 -grpc_initial_window_size 1073741824
 -grpc_server_initial_conn_window_size 1073741824
 -grpc_server_initial_window_size 1073741824
 -grpc_server_keepalive_enforcement_policy_min_time 2s
 -health_check_interval 1s
 -queryserver-config-idle-timeout 1200
 -queryserver-config-passthrough-dmls
 -queryserver-config-pool-size 150
 -queryserver-config-schema-reload-time 300
 -queryserver-config-transaction-cap 150
 -queryserver-config-txpool-timeout 3
 -unhealthy_threshold 1h

