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Stateful workloads are long running jobs, often times with 
multiple discrete steps that require state store and data 
passing amongst those steps

Stateful Workloads

What are typical stateful workloads
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Data Science Pipelines 
● Pricing Optimizer Models
● ETA, Locations and Maps

ETL Jobs
Data Backup
Simulations
● End to End Ride Simulation

Stateful Workloads

Stateful Workloads @Lyft
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Flyte makes it easy to Orchestrate ML & Data Workflows at Scale. Its goal is to enable 
Collaboration, Reuse, and perform ML Ops Across Teams.

Core Features:

● Serverless - dynamic procurement of CPUs, GPUs and Memory
● Multi-Tenant & Shareable: project isolation, sharing & accounting
● Operational Excellence: observability, monitoring & security
● Extensibility: a pluggable system
● REST/gRPC Service for interaction

Flyte

Introducing Flyte
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Tasks: 
● Atomic units of work/user action.
● Various Types & Arbitrarily complex: 

○ Single Node binary (python, golang etc)
○ Multi-node Spark application

Nodes: Wraps individual tasks or a dynamically-generated-workflow and 
defines the relationship with other nodes

Workflows: Nodes with data dependencies between them

Tasks & Workflows have inputs and outputs

Flyte

Concepts in Flyte
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Architecture Overview
FlyteCLI, FlyteKit
User plane

FlyteAdmin, FlyteDashboard
Control plane to manage 
users/projects/executions

FlytePropeller & Plugins
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FlytePropeller

● Implements a controller loop intended state 
= actual state

● Uses etcD as the state-store and events to 
monitor completion of steps

● Scalable and Highly optimized for high 
throughput

Other Operators / Plugins

● SparkOperator
● SageMaker (Coming Soon)

●

Flyte

Dataplane Zoom in
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● FlyteWorkflows are implemented as 
Kubernetes Custom Resource 
Definition

● Workflow definition consisting:
○ Workflow Inputs
○ Nodes
○ Connections
○ Workflow Outputs

Flyte

CRD
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Status: Separate entity in CRD similar 
to other K8s resources. Captures: 

● Individual Node & overall Workflow 
Status

● Node & Workflow outputs

Flyte

Status of a Workflow
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Coming soon

Coming soon

Flyte

Flyte

Ecosystem



Flyte

Scale
● Batch jobs present a different set of 

challenges than regular services
● Load is bursty:

○ 10 million+ containers executed per month
○ 1000s of containers per min
○ 1000s of wf executions concurrently

Multi-Tenancy
● Isolation and Fairness is a requirement
● Resource management

Challenges and goals

Platform hell!
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Performance
● Minimize system overhead i.e. transition time between states of a 

workflow
● Reduce overall setup time for tasks

Extensibility
● Easily extensible to let users add support for new task types like Flink 

etc

Challenges and goals

Need for Speed and Flexibility
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User Insights and Visibility
● Visibility into execution details and resource usage/utilization

Infra Cost optimization
● Granular Infra spending for individual users/teams
● Optimizations: Spot instances, utilization patterns/optimizations

Challenges and goals

ROI & Observability
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Operator Control Loops:
● K8s Operators including FlytePropeller/SparkOperator implement a control loop
● Responsible for driving each workflow CRD to completion state

Limitations: 
At our scale, even the minimal processing per WF leads to unacceptable round latency

Solutions:
● Reduce number of etc.d writes via version caching and idempotent state machines
● Updates via K8s SubResource (Under-Development)
● Flyte spec offload to workaround etcd limitations (Under-Development)

Pitfalls & Learnings

Scale
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Limitations:
● API Server slowdown for aggregate count of k8s objects above a certain number

○  Pods, Configs, Secrets, Flyte/Spark CRDs etc
● K8s pod limit per node is hit for large machine instances (~100)
● Further slow down due to Admission controller checks
● At scale, K8s GCs completed pods before FlytePropeller observes it

Solutions:
● Periodic GC of completed workflow CRDs and owned resources
● Heterogeneous machine pool to reduce system slack while being under pod limit per 

node (~100) 
● Init container (IAM-wait) to handle delays in Access Token propagation

Pitfalls & Learnings

Single K8s Cluster
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Isolation & Fairness Resource management via K8s resource quotas and a separate 
in-memory store for non-K8s Resources
● Resource Quotas Admission Control is expensive: High API Server Load/High 

latencies
● Backoff required

Flyte Control Plane Isolation 
● Flyte Control plane on separate/reserved nodes
● Multiple workflows queues and worker pool per namespace (Under-Development)

Pitfalls & Learnings

Multi-Tenancy
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● Discoverable Tasks: Skip expensive task executions 
and re-use cached results if the task logic and inputs 
haven’t changed

● Data cache to reduce data fetch overhead in 
dependent tasks

● Node-Affinity: Multi-container data-intensive tasks 
like Spark benefit from being placed on the same 
Node.(Under-Development)

● Write-through cache for workflow CR to reduce etcd 
gets/update. (Under-Development)

Pitfalls & Learnings

Performance
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● Leverage utilization pattern to come up with better 
scheduling techniques:

○ DefaultProvider vs ClusterAutoscalerProvider
○ Kube-Batch Scheduler

● Optimizing cost by minimizing high cost instances:
○ Multiple QoS Tiers (Under-Development)
○ Critical Tier relies on over-provisioned capacity and auto-scaling
○ Queueing to reduce node-scaling during temporary bursts

● Leverage spot instances (Under-Development)
● Discoverable Tasks
● User visibility:

○ Execution Cost per task
○ Aggregated Cost per team/project

Pitfalls & Learnings

Cost Optimization
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● Execution details are persisted in a separate Datastore for visibility and tracking 
● Metrics:

○ User Metrics via StatsD
○ System Metrics via Prometheus/SignalFx

■ Usage metrics by teams
■ Utilization metrics by teams

● User logs:
○ K8s logs are ephemeral and are lost after pod completion
○ Fluentd/AWS Cloudwatch based solution
○ Individual log size limits for Isolation & cost optimization

Pitfalls & Learnings

Observability
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● Plugin model helps extend support for new task types and data processing systems
● Local state store to reduce leakage in non-idempotent plugins
● Plugins get a hook into Flyte Resource-management 

Pitfalls & Learnings

Extensibility
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● Single Cluster does not meet Flyte SLOs
● FlyteAdmin can work with multiple Flyte 

K8s clusters
● FlyteAdmin intelligently distributes 

executions:
○ Configured Load Distribution Policy

i. Load Balance based on 
cluster-weights

ii. Placement using cluster labels
○ Cluster Health

● Multiple clusters provide:
○ Fault-tolerant scalable system 
○ Incremental system updates

 

.

Scaling Beyond Single Cluster
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Thanks!

Don’t miss our Flyte Talk later today@5:20: Flyte 
In-Depth Introduction

Get started & keep in touch at 
Flyte.org

Flyte

https://kccncna19.sched.com/event/UaYY/flyte-cloud-native-machine-learning-data-processing-platform-ketan-umare-haytham-abuelfutuh-lyft
https://kccncna19.sched.com/event/UaYY/flyte-cloud-native-machine-learning-data-processing-platform-ketan-umare-haytham-abuelfutuh-lyft
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Join us for some local beer, wine, and tacos! 

Lyft Happy Hour
Date: Tuesday, Nov 19
Time: 7pm-10pm
Where: Thorn Barrio Logan (1745 National Avenue, San Diego, CA 92113)

RSVP: https://lyft-kubecon.splashthat.com/ (you can also register at the door)

https://lyft-kubecon.splashthat.com/

