
Flyte

Surinder Singh
Software Engineer
Lyft
 @surinderpal

Running Large Scale Stateful Workloads
On Kubernetes

Anmol Khurana
Software Engineer
Lyft
 @anmolkhurana

Flyte

Stateful workloads
1

Agenda Challenges of Stateful Workloads3

Pitfalls & Learnings4

Scaling Beyond Single Cluster5

Kind of workloads, some numbers

Questions6

Flyte
Kubernetes-Native Data Orchestration Platform

2

Flyte

Stateful workloads are long running jobs, often times with
multiple discrete steps that require state store and data
passing amongst those steps

Stateful Workloads

What are typical stateful workloads

Flyte

Data Science Pipelines
● Pricing Optimizer Models
● ETA, Locations and Maps

ETL Jobs
Data Backup
Simulations
● End to End Ride Simulation

Stateful Workloads

Stateful Workloads @Lyft

Flyte

Flyte makes it easy to Orchestrate ML & Data Workflows at Scale. Its goal is to enable
Collaboration, Reuse, and perform ML Ops Across Teams.

Core Features:

● Serverless - dynamic procurement of CPUs, GPUs and Memory
● Multi-Tenant & Shareable: project isolation, sharing & accounting
● Operational Excellence: observability, monitoring & security
● Extensibility: a pluggable system
● REST/gRPC Service for interaction

Flyte

Introducing Flyte

Flyte

Tasks:
● Atomic units of work/user action.
● Various Types & Arbitrarily complex:

○ Single Node binary (python, golang etc)
○ Multi-node Spark application

Nodes: Wraps individual tasks or a dynamically-generated-workflow and
defines the relationship with other nodes

Workflows: Nodes with data dependencies between them

Tasks & Workflows have inputs and outputs

Flyte

Concepts in Flyte

Flyte

Flyte

Flyte

Flyte

Architecture Overview
FlyteCLI, FlyteKit
User plane

FlyteAdmin, FlyteDashboard
Control plane to manage
users/projects/executions

FlytePropeller & Plugins

Flyte

FlytePropeller

● Implements a controller loop intended state
= actual state

● Uses etcD as the state-store and events to
monitor completion of steps

● Scalable and Highly optimized for high
throughput

Other Operators / Plugins

● SparkOperator
● SageMaker (Coming Soon)

●

Flyte

Dataplane Zoom in

Flyte

● FlyteWorkflows are implemented as
Kubernetes Custom Resource
Definition

● Workflow definition consisting:
○ Workflow Inputs
○ Nodes
○ Connections
○ Workflow Outputs

Flyte

CRD

Flyte

Status: Separate entity in CRD similar
to other K8s resources. Captures:

● Individual Node & overall Workflow
Status

● Node & Workflow outputs

Flyte

Status of a Workflow

Flyte

I

Coming soon

Coming soon

Flyte

Flyte

Ecosystem

Flyte

Scale
● Batch jobs present a different set of

challenges than regular services
● Load is bursty:

○ 10 million+ containers executed per month
○ 1000s of containers per min
○ 1000s of wf executions concurrently

Multi-Tenancy
● Isolation and Fairness is a requirement
● Resource management

Challenges and goals

Platform hell!

Flyte

Performance
● Minimize system overhead i.e. transition time between states of a

workflow
● Reduce overall setup time for tasks

Extensibility
● Easily extensible to let users add support for new task types like Flink

etc

Challenges and goals

Need for Speed and Flexibility

Flyte

User Insights and Visibility
● Visibility into execution details and resource usage/utilization

Infra Cost optimization
● Granular Infra spending for individual users/teams
● Optimizations: Spot instances, utilization patterns/optimizations

Challenges and goals

ROI & Observability

Flyte

Operator Control Loops:
● K8s Operators including FlytePropeller/SparkOperator implement a control loop
● Responsible for driving each workflow CRD to completion state

Limitations:
At our scale, even the minimal processing per WF leads to unacceptable round latency

Solutions:
● Reduce number of etc.d writes via version caching and idempotent state machines
● Updates via K8s SubResource (Under-Development)
● Flyte spec offload to workaround etcd limitations (Under-Development)

Pitfalls & Learnings

Scale

Flyte

Limitations:
● API Server slowdown for aggregate count of k8s objects above a certain number

○ Pods, Configs, Secrets, Flyte/Spark CRDs etc
● K8s pod limit per node is hit for large machine instances (~100)
● Further slow down due to Admission controller checks
● At scale, K8s GCs completed pods before FlytePropeller observes it

Solutions:
● Periodic GC of completed workflow CRDs and owned resources
● Heterogeneous machine pool to reduce system slack while being under pod limit per

node (~100)
● Init container (IAM-wait) to handle delays in Access Token propagation

Pitfalls & Learnings

Single K8s Cluster

Flyte

Isolation & Fairness Resource management via K8s resource quotas and a separate
in-memory store for non-K8s Resources
● Resource Quotas Admission Control is expensive: High API Server Load/High

latencies
● Backoff required

Flyte Control Plane Isolation
● Flyte Control plane on separate/reserved nodes
● Multiple workflows queues and worker pool per namespace (Under-Development)

Pitfalls & Learnings

Multi-Tenancy

Flyte

● Discoverable Tasks: Skip expensive task executions
and re-use cached results if the task logic and inputs
haven’t changed

● Data cache to reduce data fetch overhead in
dependent tasks

● Node-Affinity: Multi-container data-intensive tasks
like Spark benefit from being placed on the same
Node.(Under-Development)

● Write-through cache for workflow CR to reduce etcd
gets/update. (Under-Development)

Pitfalls & Learnings

Performance

Flyte

● Leverage utilization pattern to come up with better
scheduling techniques:

○ DefaultProvider vs ClusterAutoscalerProvider
○ Kube-Batch Scheduler

● Optimizing cost by minimizing high cost instances:
○ Multiple QoS Tiers (Under-Development)
○ Critical Tier relies on over-provisioned capacity and auto-scaling
○ Queueing to reduce node-scaling during temporary bursts

● Leverage spot instances (Under-Development)
● Discoverable Tasks
● User visibility:

○ Execution Cost per task
○ Aggregated Cost per team/project

Pitfalls & Learnings

Cost Optimization

Flyte

● Execution details are persisted in a separate Datastore for visibility and tracking
● Metrics:

○ User Metrics via StatsD
○ System Metrics via Prometheus/SignalFx

■ Usage metrics by teams
■ Utilization metrics by teams

● User logs:
○ K8s logs are ephemeral and are lost after pod completion
○ Fluentd/AWS Cloudwatch based solution
○ Individual log size limits for Isolation & cost optimization

Pitfalls & Learnings

Observability

Flyte

● Plugin model helps extend support for new task types and data processing systems
● Local state store to reduce leakage in non-idempotent plugins
● Plugins get a hook into Flyte Resource-management

Pitfalls & Learnings

Extensibility

Flyte

● Single Cluster does not meet Flyte SLOs
● FlyteAdmin can work with multiple Flyte

K8s clusters
● FlyteAdmin intelligently distributes

executions:
○ Configured Load Distribution Policy

i. Load Balance based on
cluster-weights

ii. Placement using cluster labels
○ Cluster Health

● Multiple clusters provide:
○ Fault-tolerant scalable system
○ Incremental system updates

.

Scaling Beyond Single Cluster

Flyte

Thanks!

Don’t miss our Flyte Talk later today@5:20: Flyte
In-Depth Introduction

Get started & keep in touch at
Flyte.org

Flyte

https://kccncna19.sched.com/event/UaYY/flyte-cloud-native-machine-learning-data-processing-platform-ketan-umare-haytham-abuelfutuh-lyft
https://kccncna19.sched.com/event/UaYY/flyte-cloud-native-machine-learning-data-processing-platform-ketan-umare-haytham-abuelfutuh-lyft

Flyte

Join us for some local beer, wine, and tacos!

Lyft Happy Hour
Date: Tuesday, Nov 19
Time: 7pm-10pm
Where: Thorn Barrio Logan (1745 National Avenue, San Diego, CA 92113)

RSVP: https://lyft-kubecon.splashthat.com/ (you can also register at the door)

https://lyft-kubecon.splashthat.com/

