
A Status Update

Porting Envoy To Windows

William A. Rowe Jr. - Pivotal

Yechiel Kalmenson - Pivotal



Cover w/ Image

Agenda

■ Who are we, and what is 
Envoy anyways?

■ What Issues have been 
solved, will be solved again, 
and are in progress today?

■ What's ahead for Windows?



Introductions

Yechiel Kalmenson

● Software Engineer at Pivotal

● Working on the Windows Containers team

● Has been working on the Windows Envoy 
port for about a year 

● @yechielk on Slack and social media

William A. Rowe, Jr.

● Principal Software Engineer at Pivotal

● Member of the Pivotal App Suite team in the 
Spring / Cloud Foundry organization

● Instrumental in the Windows port of APR 2.0, 
the Apache Portability Runtime underneath 
Apache Web Server, Subversion and others

● Joined the Windows Containers team effort 
to port Envoy this past Spring

● @wrowe on Slack and social media



What is Envoy?



“The goal of Envoy is to be an 

abstraction that allows higher layer 

systems to be built that make the 

network transparent to end users.”

- Matt Klein, Lyft



2015

Work on a network 
proxy is started at 
Lyft.

Sep. 2016

Envoy becomes 
Open Source

Jul. 2017

Pivotal starts 
looking for a 
solution for c2c 
route integrity

Summer 2017

Meetings between 
Pivotal, Envoy, and 
Microsoft to 
hammer out 
approach and divide 
the work

2018

Envoy adopts bazel 
as a unified build 
system

July 2018

Pivotal starts work 
in earnest based on 
Microsoft’s earlier 
fork and our 
patched bazel

Timeline



7https://content.pivotal.io/blog/new-in-pcf-2-1-app-container-identity-assurance-via-automatic-cert-rotation

Pivotal Use Case

https://content.pivotal.io/blog/new-in-pcf-2-1-app-container-identity-assurance-via-automatic-cert-rotation


What We’ve Done Already



Bazel fixed the issue around passing in long 
command lines.

What We Solved Already



Many Linux-specific socket issues were 
resolved by OS/X work around BSD sockets

What We Solved Already



<windows.h> #define’s many common 
keywords that had to be #undef’ed in every 
file where windows headers were included

What We Solved Already



bazel_foreign_cc has been greatly 
simplified for our CMake dependencies

What We Solved Already



All external dependencies are bundled into 
envoy-static.exe

What We Solved Already



Bazel fixed the issue around passing in long 
command lines.

What We Solved Already



What Still Needs To Be Done



The size of an 'int'eger or 'long' on Windows is and will remain 32 
bits, while pointers are 64 bits (we refer to this as a 64P 

architecture.)

On Linux, OS/X and other *nix variants, the 'int', 'long' and pointer 
typesare all 64 bits (64ILP architecture).

This will frustrate contributors to the Envoy project, which prefers fixed-size types 
such as int64_t, uint32_t etc. The Standard C++ library interfaces must conform to 

the actual size of the platform's 'int', 'long' types, etc.

Issues Which Can Be Reintroduced 
By Other Contributors



The Windows MSVC compiler began and never 
completed a full Posix implementation. Many commonly 
used Posix data types and functions aren't available, or 

differ in name or implementation details.

A prime example is the lack of 'ssize_t' type on Windows, versus the 
ISO/C++ 'ptrdiff_t' type which is part of the language standard.

Issues Which Can Be Reintroduced 
By Other Contributors



Many small bugs need to be patched, because Microsoft, 
the GNU gcc project, and the Llvm clang communities all 

interpret the C++17 language standard in slightly 
different ways.

E. G. Alternative operator representations such as 'not', 'and', 
'compl' etc. which were alternatives to '!', '&&', '~' etc. on gcc and 

clang, but were never supported by Microsoft's cl.exe.

Issues That Need Collaboration



In solving these issues, the question has come up 
whether clang-cl.exe, the Llvm compiler project's 

Microsoft cl.exe portability interface, will prove to be a 
better solution than MSVC.

We are exploring both in parallel and expect to support both, long 
term. Both will be in the project's CI for evaluating patch 

submissions.

Issues That Need Collaboration



Many earlier "solutions" to bazel BUILD configuration 
need to be simplified. 

Different approaches were taken at different points in 
the development of the bazel build environment, the final 

clean solutions need to be deployed.

Issues for Windows In Progress



Many tests are based on invoking bash and specific GNU 
toolchain utilities, which differ from the Windows 

toolchain, need to be adjusted.

Issues for Windows In Progress



Envoy is sensitive to file changes (such as configuration 
files), a different implementation of file change 

notification needs to be completed

Issues for Windows In Progress



Process control primitives are very different on Windows 
vs. *nix OSs. Signal processing code for Windows 

conventions is still needed, and new code is needed to 
run Envoy as a background process (service.)

Issues for Windows In Progress



Windows SOCKET and HANDLE objects won't fit into an 
'int' type as Unix file descriptors do. These are being 

abstracted into a IoHandle class.

Issues for Windows In Progress



The windows socket API is level triggered, not edge 
triggered, and this results in poor poll-based 

performance on Windows. Windows has its own APIs 
such as I/O Completion Ports, so an alternate state 

engine may be necessary.

Issues for Windows In Progress



Envoy's engine is based on the libevent project. 
Alternatives include libev and libuv which may be better 

matches for Windows.

Issues for Windows In Progress



Windows Progress and Extensions
Envoy is built from a collection of extensions

● The bulk of Envoy consists of extensions to the core processing engine.

● Some examples include HTTP/1 vs HTTP/2 provided by the nghttp2 library 
vs QUIC provided by the quiche implementation.

● Other categories include logging, routing, filtering, and monitoring.

● During porting, we've focused on that core functionality and set the vast 
majority of extensions aside to focus on the core server.

● We are asking for additional contributors to take on one or a group of 
related extensions and finish porting that functionality, so that the Windows 
port is as expansive as the Linux and OS/X ports.



Where Do We Go From Here?



What the Future Looks Like
● Pivotal remains committed to advancing and maintaining this 

Windows port.

● The Envoy community of developers has been very welcoming and 
supportive of efforts to port Envoy to Windows.

● Microsoft has recently expressed renewed interest in contributing 
to this port.

● Envoy remains a very flexible platform, so optimizations and 
features addressing specific platforms and use cases remains very 
approachable.



Cover w/ Image

How Can I Get Involved?

■ Join the #envoy-windows-dev 
channel on Envoy Slack to follow or 
help with porting and development

■ See the Envoy Project on GitHub for 
open issues tagged [Help Wanted]

■ Watch the Building and Installation 
page in the Envoy Docs for word that 
Windows binaries dropped

■ Join #envoy-users channel for peer 
support once Windows has arrived



Q & A


