
On the Security of Copying
To and From Live Containers
Yuval Avrahami & Ariel Zelivansky
Palo Alto Networks

Agenda

Background Copy
Vulnerabilities Takeaways

Podman Docker K8s

● Restricted processes chrooted to a
separate filesystem

Containers 101

Starting a Container

● runC - the industry
standard tool for
running containers

Starting a Container

● Namespaces
● Cgroups
● Chroot to image fs

(/var/.../docker/$ctrid/merged)
● Drop capabilities
● LSMs (AppArmor)

...

Starting a Container

● It’s alive!

Starting a Container

> docker run ubuntu sleep

Starting a Container

● Result:

> docker run ubuntu sleep

Engine or Runtime?

Copy Command

● Copy from a container to host
● Copy from host to container
● Copy between containers

> docker cp /tmp/file ubuntu_container:/tmp/file

Podman

> podman cp host_file ctr:/dir/abc

● Build container path (from host’s view)
○ /var/lib/…/$ctrid/merged + /dir/abc

● Then copy
> cp host_file /var/lib/…/$ctrid/merged/dir/abc

So What Could Go Wrong?

● Symlinks!

Case #1 - Podman CVE-2019-10152

● Symlinks resolved under host root
fake_dir -> /critical/path
> podman cp host_file ctr:/fake_dir/ab

/critical/path/ab

Docker - Copying In

1. Resolve container path in container root
2. Add resolved path to container mount point
3. Copy
fake_dir -> /critical/path
> docker cp host_file ctr:/fake_dir/abc

1. /critical/path/abc
2. /var/lib/.../$ctrid/merged + /critical/path/abc
3. cp host_file /var/.../merged/critical/path/abc

Case #2 - Docker CVE-2018-15664

● Symlink exchange race attack
docker cp /host_file ctr:/somedir/file
1. /somedir/file
2. /var/lib/.../$ctrid/merged + /somedir/file

3. cp /host_file /var/lib/.../merged/somedir/file
somedir -> /critical/path

/critical/path/file

Dealing with symlinks

● Sort of partially enter the container!
○ Fork and run helper binary
○ Partially enter container (chroot)
○ Do all steps that can have symlink issues

* Symlinks are resolved under the accessing process root

Docker - Copying Out

● Daemon forks and runs docker-tar
○ Chroot to container
○ Tar the requested files
○ Pass back tar to docker daemon

● No symlink issues!

So What Could Go Wrong?

● You're partially entering the container…
○ Creating a bridge between the container and

the host

Case #3 - Docker CVE-2019-14271

● Full host compromise upon copying out
● docker-tar chroots to the container

○ Golang v1.11 feature/bug - some packages (net,
os/user) with cgo (embedded C code)
dynamically load shared libraries at run time

● docker-tar dynamically loads libnss_*.so
libraries from the container!

Case #3 - Docker CVE-2019-14271

● Attack scenarios
○ Malicious image with bad

libnss_files.so
○ Attacker compromised a container and

switched libnss_files.so
● PoC

Case #3 - Docker CVE-2019-14271

● Fix - Force lib loading before chroot

Fully Entering the Container

● Helper binary runs inside the container
○ Fully containerized process (docker exec)
○ Helper process can’t directly access host

What Could Go Wrong

● Your helper binary is exposed to attackers
in the container

Kubernetes Implementation
● kubectl cp doc

Kubernetes Implementation

● To copy files from a container
○ Kubectl uses the container’s tar binary to

archive requested files, unpacks at host
● What if an attacker replaces tar binary?

Case #4 - Kubernetes CVE-2018-1002100
March 2018
Michael Hanselmann

Case #4 - Kubernetes CVE-2018-1002100

● Classic directory traversal
● Tar file includes path with ../ and can escape

target directory
○ /some/remote/dir/../../../../tmp/foo
○ Writes to /tmp/foo

● Fixed by sanitizing path

Case #4.5 - Kubernetes CVE-2019-1002101

● Symlinks!
● Tar format supports files, directories and

symlinks
● So what?

Case #4.5 - Kubernetes CVE-2019-1002101

● Create a malicious tar that has a header with
symlink to an outside directory
○ /sym -> /critical/path
○ /sym/malicous_file

● Surprise!
○ /critical/path/malicious_file
○ Kubectl copies last file to the symlink target

Case #4.5 - Kubernetes CVE-2019-1002101

● Disclosed to the Kubernetes and Openshift security
teams, patch was issued

● Redesign suggested

Case #4.5 - Kubernetes CVE-2019-11246

● CNCF Security Audit later revealed the fix was
insufficient

Case #4.5 - Kubernetes CVE-2019-11249

● Symlink restriction is (still) not easy

Kubernetes Future

● KEP future-of-kubectl-cp
●

Design Suggestion

● Freeze with freezer cgroup
○ Avoid races

● Enter with caution
○ Mount ns and chroot (LXD)
○ Do not use anything from inside the container
○ Statically linked helper binaries

The Future

● New syscall!
● openat2() - restrict path resolution

○ LOOKUP_BENEATH
○ LOOKUP_IN_ROOT
○ LOOKUP_NO_SYMLINKS
○ LOOKUP_NO_MAGICLINKS
○ LOOKUP_NO_XDEV

Thank you
Ariel Zelivansky | azelivansky@paloaltonetworks.com

Yuval Avrahami | yavrahami@paloaltonetworks.com

Unit42.paloaltonetworks.com

Appendix - Copy vulnerabilities

● Docker moby#5720, moby#6000, CVE-2018-15664,
CVE-2019-14271

● Kubernetes CVE-2018-1002100, CVE-2019-1002101,
CVE-2019-11246, CVE-2019-11249

● Podman CVE-2019-10152

