

Multiple Networks
for Kubernetes Workloads
Piotr Skamruk
CodiLime

Doug Smith
Red Hat

Agenda

● Rationale for this presentation, short introduction to Kubernetes networking

● Review of CNI multiplexers:

○ CNI-Genie

○ Multus CNI

● Other approaches:

○ Nokia DANM

○ Tungsten Fabric, ZTE Knitter

● Few words about Network Attachments

● Few words about proposal of native Network object in Kubernetes

3

Why multiple networks?

It’s straightforward for web scale.

4

But what about for performance
networking workloads?

everything

Some REST API PodSome REST API Pod

eth0eth0

Control Plane

Data Plane

Your networking workloadYour networking workload

eth0eth0 ??

Kubernetes networking

5

Control Plane

Node

Kubelet

runtime

pod

pod

pod

Node

Kubelet

runtime

pod

pod

pod

Node

Kubelet

runtime

pod

pod

pod

...

Kubernetes networking

Assumptions:

● Each pod has own IP address

● Pod on a node can communicate with other pods/services in cluster without any NAT

● System services (kubelet, daemonsets) on a node can communicate with all pods on
that node

● No extorsion for a particular solution - operator can decide which solution will fulfill his
own assumptions

● Networking can be based on kubenet (using CNI plugin Bridge), or on CNI

6

A short introduction to CNI

● CNI (Container Network Interface) is a
Cloud Native Computing Foundation project,
consisting of a specification and libraries for
writing plugins to configure network interfaces
in Linux container

● CNI is container runtime agnostic -- it doesn’t
require Kubernetes.

● CNI is easy to implement as a developer -- it’s
basically as simple as having your application
read/write STDOUT.

● CNI simplifies networking for Kubernetes,
Kubernetes doesn’t have to know the ins-and-
outs of your networking -- you can have your
plugins keep that knowledge.

7

https://cncf.io/

Example CNI plugin: Bridge

8

CNI CRI Runtime

Pod
Bridge
on Host

veth pair

Container ID: A
Config: {...}
Method: ADD
... Bridge

CNI

Environment variables

A dissection of CNI configurations

Type refers to the file name of the CNI plugin binary
on disk that will be called.

Plugins can implement any arbitrary field name
that’s not already reserved, here the bridge CNI asks
for the desired name of a bridge created on each
node.

An optional secondary CNI plugin used for IP
Address Management (IPAM) to customize how IP
addresses are allocated.

9

{
 "cniVersion": "0.4.0",
 "name": "dbnet",
 "type": "bridge",
 // type (plugin) specific
 "bridge": "cni0",
 "ipam": {
 "type": "host-local",
 // ipam specific
 "subnet": "10.1.0.0/16",
 "gateway": "10.1.0.1"
 },
 "dns": {
 "nameservers": ["10.1.0.1"]
 }

}

10

Pod without Multiplexer Pod with Multiplexer

Pod

eth0eth0
Default CNI

Container Runtime

Default
CNI

Pod

eth0eth0

Default CNI
net0net0

Additional CNI

Container Runtime

Default
CNI

Additional
CNI

CNI Multiplexer

CNI Multiplexers

Quick refresher: Custom Resources

11

Custom Resource Definition: Fruit

Type: Lemon
Flavor: Sour
Color: Yellow

Type: Apple
Flavor: Sweet
Color: Red

Type: Kiwi
Flavor: Sweet
Color: Green

Custom Resources

Your AppYour App

Kubernetes APIKubernetes API

NetworkAttachmentDefinitions

The Network Plumbing Working Group’s primary goal is to define a Spec that creates a
standardized Custom Resource to express how you attach multiple networks to pods in
Kubernetes.

Having a standardized custom resource helps to normalize the user experience should users
change between technologies, or if platforms change the deployed technology to achieve
multiple network attachments.

Learn more @ https://github.com/k8snetworkplumbingwg/community

12

https://github.com/K8sNetworkPlumbingWG/multi-net-spec/blob/master/%5Bv1%5D%20Kubernetes%20Network%20Custom%20Resource%20Definition%20De-facto%20Standard.md
https://github.com/k8snetworkplumbingwg/community

Multus CNI

Is a custom resource, and uses
NetworkAttachmentDefinitions as defined by the
Network Plumbing Working Group

Annotations refer to this name

Contains a CNI configuration packaged in the
spec.config field.

13

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: macvlan-conf
spec:
 config: '{
 "cniVersion": "0.3.0",
 "type": "macvlan",
 "master": "eth0",
 "mode": "bridge",
 "ipam": {
 "type": "host-local",
 "subnet": "192.168.1.0/24",
 "rangeStart": "192.168.1.200",
 "rangeEnd": "192.168.1.216",
 "routes": [
 { "dst": "0.0.0.0/0" }
],
 "gateway": "192.168.1.1"
 }

 }'

CNI-Genie - Simple case

Optional “cni” annotation - can hold list of
configuration names, if empty - one would be chosen
in “smart” way using cAdvisor data; if not defined -
default plugin(s) will be used

Optional “multi-ip-preferences” annotation - will store
information about ip addressing per selected
configuration

14

apiVersion: v1
kind: Pod
metadata:
 name: app-on-multiple-interfaces
 annotations:
 cni: "flannel,weave"
 multi-ip-preferences: |
 [
 "multi entry": 0,
 "ips": {
 "": {
 "ip": "",
 "interface": ""
 }
 }
]

spec:
 ...

CNI-Genie - Network attachments case

“networks” annotation - contains list of network
attachments to select. Can be in form of string, or
json list

“networks-status” annotation - will contain detailed
info of attachments, including default attachment

15

apiVersion: v1
kind: Pod
metadata:
 name: app-on-multiple-interfaces
 annotations:
 k8s.v1.cni.cncf.io/networks:
flannel@eth1, customns/weavenet@eth2
 k8s.v1.cni.cncf.io/network-status: |-
 [
 ...
]
spec:
 ...

Nokia DANM

Higher level expression of what you’d like the
interfaces to do.

More opinionated. Has more built in, but, limited in
terms of flexibility.

Example use/configuration for https://github.com/nokia/danm

16

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: test-deployment
 namespace: default
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: test-deployment
 annotations:
 danm.k8s.io/interfaces: |
 [
 {"tenantNetwork":"management",
"ip":"dynamic"},
 {"clusterNetwork":"external",
"ip":"dynamic"},
 {"tenantNetwork":"internal", "ip":"dynamic"}
]
 spec:
 containers:
 - name: busybox
 image: busybox:latest
 args:
 - sleep
 - "1000"

https://github.com/nokia/danm

Other solutions

Tungsten Fabric

● Main purpose: connecting multiple orchestration stacks like Kubernetes,
Mesos/SMACK, OpenShift, OpenStack and VMware.

● It’s also using network attachments, but not as meta plugin calling other normal plugins -
but only knowing how to handle tungsten logic.

ZTE Knitter - it’s speaking CNI protocol, it allows to connect multiple interfaces to a single
pod, but its CNI responses are faked, predefined, with same content all the time.

17

https://github.com/ZTE/Knitter/blob/master/knitter-plugin/main.go#L45

Network Plumbing Working Group

● Formed @ Kubecon North America 2017

● Originally formed to address the “multi-networking problem” in Kubernetes in an out-of-
tree fashion (that is, without changing the core Kubernetes code base)

● Meets every other week (opposite SIG-Network meetings) at 9:30 AM Eastern Standard
Time

● Please come and join the effort!

18

Native K8S Network object

● Proposal prepared and left for comments on NPWG

● What we can gain by adding to kubernetes new core object - Network

● Fallback to current simple model - “default” network

● How it can be handled on runtime level (name of CNI config).

● What can be easily improved later (exposing by CRI networks available for particular the
node, exposing this info by kubelet e.g. in node status as a list of strings, using this info
by scheduler during pods allocation on nodes)

19

URLZ

● https://github.com/intel/multus-cni/

● https://github.com/cni-genie/CNI-Genie

● https://github.com/nokia/danm

● https://github.com/ZTE/Knitter

● https://tungsten.io/

● https://www.youtube.com/watch?v=-lZzcq9aZg4

● Network Attachments Spec

20

https://github.com/intel/multus-cni/
https://github.com/cni-genie/CNI-Genie
https://github.com/nokia/danm
https://github.com/ZTE/Knitter
https://tungsten.io/
https://www.youtube.com/watch?v=-lZzcq9aZg4
https://github.com/k8snetworkplumbingwg/multi-net-spec/blob/master/%5Bv1%5D%20Kubernetes%20Network%20Custom%20Resource%20Definition%20De-facto%20Standard.md

Questions & Answers

Thank You

	Slide 1
	Multiple Networks for Kubernetes Workloads
	Agenda
	Why multiple networks?
	Kubernetes networking
	Kubernetes networking
	A short introduction to CNI
	Example CNI plugin: Bridge
	A dissection of CNI configurations
	CNI Multiplexers
	Quick refresher: Custom Resources
	NetworkAttachmentDefinitions
	Multus CNI
	CNI-Genie - Simple case
	CNI-Genie - Network attachments case
	Nokia DANM
	Other solutions
	Network Plumbing Working Group
	Native K8S Network object
	URLZ
	Questions & Answers
	Thank You

