
Answering the Why Question
All the CRI Runtimes: Part 2

Phil Estes, Distinguished Engineer
IBM Cloud

Again with the runtimes talk!?

@estesp
https://www.youtube.com/watch?v=FKoVztEQHss

https://www.youtube.com/watch?v=FKoVztEQHss

Background: OCI

@estesp

OCI specifications

Linux kernel Windows kernel

Container
registries

Container
runtimes

Docker, containerd, cri-o, Kata,
Firecracker, gVisor, Nabla,
Singularity, ...

DockerHub, OSS distribution
project, Harbor, Quay.io, Cloud
registries, JFrog, ...

Background: CRI

@estesp

Background: CRI Runtimes

@estesp

kubelet

dockershim

dockerd

cri-containerd

containerd

cri-o

runc

containerd

Kata Firecracker

kubelet --container-runtime {string}
 --container-runtime-endpoint {string}

singularity-cri

singularity

runccontainerd

runc

gVisor

Shim API

RuntimeClass
and/or annotations

Where are we?

@estesp

Source: Sysdig 2019 Container Usage Report
 https://sysdig.com/blog/sysdig-2019-container-usage-report/

https://sysdig.com/blog/sysdig-2019-container-usage-report/

Docker

@estesp

Docker: What

@estesp

● The runtime that started this whole thing.
● Docker CE: free community edition built from Moby project and

Docker components:
○ CLI, daemon, BuildKit, containerd, runc, notary, etc.
○ defacto “standard” among runtimes used for Kubernetes

● Docker Enterprise: a Kubernetes distribution (including Swarm
support) with control plane, dashboard, and registry sold as a
packaged offering with a supported engine ~ Docker CE
○ Now owned by Mirantis as of last week

● Docker Desktop: single node K8s (and Swarm) on MacOS and
Windows

Docker: Why

@estesp

● Most commonly used, original runtime for Kubernetes clusters.
○ Many tools, installers, deployers automatically default to Docker

● Simplifies tooling for mixed use nodes
○ e.g. applications relying on `docker …` commands “just work”
○ hacks (that people shouldn’t rely on in 2019!) like `docker build` from the

node runtime’s API endpoint “just work”
● Docker Enterprise customers get a supported engine and

multi-orchestrator support (swarm + K8s in same cluster)
● Although there are challenges, the Docker engine is

time-tested and production deployed in significant use cases

Containerd

@estesp

Containerd: What

@estesp

Containerd: What

@estesp

● Graduated CNCF project with broad base of contributors,
maintainers, and adopters

● Small, stable, and clearly scoped container runtime built on OCI
standards and default lower-level OCI runtime, runc

● Used in GKE (Google), IKS (IBM), & Alibaba public clouds
● Extensible, clean API that has led to easy embedding and

usage by KinD, AWS ECR, AWS Firecracker, Kata,
Weaveworks Ignite/Firekube, Alibaba Pouch, k3s, ECI, Azure
Teleport, among many other tools & projects

● Lower memory/CPU footprint; focus on stability & performance

Containerd: Why

@estesp

● Broadly adopted, clear extended support terms and alignment
with Kubernetes CRI and official releases

● Significant hardening/testing by nature of use in every Docker
installation (tens of millions of engines)

● Need an extendable/embeddable runtime? Clean/clear API and
extension points.

● Maturing Windows support
● Shim v2 API (gVisor, Kata, Firecracker, etc.)
● Remote/proxy plugins for snapshotters & content store (see

Microsoft Teleport, Google CRFS, work with CERN on CVMFS)

CRI-O

@estesp

CRI-O: What

@estesp

https://sched.co/Uai5 Introduction to CRI-O - Mrunal Patel & Peter Hunt, Red Hat, Inc.

https://sched.co/Uai5

CRI-O: What

@estesp

● Direct support of OCI specifications via implemented storage
and image libraries shared among Red Hat tooling for
containers; depends on runc as default runtime

● Used in RH OpenShift; SuSE CaaS; among other customers &
use cases; provided via RHEL (no more docker rpms in 8.x)

● “all the runtime Kubernetes needs and nothing more”
● Suite of tools work together on the same on-disk

representation of image/storage

CRI-O: Why

@estesp

● OpenShift fully supports (and now defaults) to cri-o as the CRI
runtime for Kubernetes delivered via OKD

● Red Hat tool suite alignment, delivered and supported in
Fedora/RHEL with fully enabled/tested SELinux support
○ synergy with the skopeo, buildah, podman family of tools

● Simple, supported, and tested CRI implementation aligned
tightly with Kubernetes release cycle

Sandboxes + RuntimeClass

@estesp

Why Sandboxes?

@estesp

Isolators

@estesp

Worker node

Host Kernel

Container
runtime

AppArmor
SELinux

container

container

container

container

AppArmor/SELinux

Seccomp profile

Capabilities

Namespaces/CGroups

Worker node

Host Kernel

Container
runtime

kernel

VMM

container

kernel

VMM

containerContainer system
call boundary

Traditional container
runtime Lightweight hypervisor-based runtime

Kata Containers

@estesp

Kata Containers: What

@estesp

Kata Containers: What

@estesp

● Lightweight virtualization implementation via Intel Clear
Containers + Hyper.sh predecessors

● Implemented via qemu-based KVM hypervisor, but supports
Firecracker (Rust-based VMM) as well

● Works with Docker, cri-o, & containerd; supports Kubernetes
use case

● Solid and maturing project with Intel and others leading;
governance under OpenStack Foundation

● Supports ARM, x86_64, AMD64, and IBM p and zSeries
● Baidu AI Cloud whitepaper reveals use of Kata @ Baidu

○ https://medium.com/kata-containers/kata-baidu-whitepaper-16ad04a5302

https://medium.com/kata-containers/kata-baidu-whitepaper-16ad04a5302

Kata Containers: Why

@estesp

● Desire for additional isolation than Linux container primitives
● Prefer hypervisor-based, with choice of Firecracker (rust-vmm)

or qemu/KVM-based backend
● Want broad multi-architecture support
● Fewer restrictions (more containerized workloads will work out

of the box than Firecracker and gVisor)
● Better integration and support for Kubernetes today given

Firecracker’s narrower focus for a Lamba engine

AWS Firecracker

@estesp

AWS Firecracker: What

@estesp

AWS Firecracker: What

@estesp

● Lightweight virtualization via Rust-written VMM
○ originating from Google’s crosvm project
○ narrow focus on the serverless runtime use case
○ open sourced by Amazon in November 2018

● Works standalone via API or via containerd
● cgroup + seccomp “jailer” to tighten down kernel access
● Integrated with containerd via shim and external snapshotter

○ Contributed devmapper snapshotter to containerd core
● Weaveworks has wrapped Firecracker in 2019 with a few

interesting projects marrying VMs and containers: Ignite and
Firekube; others investigating Firecracker for various use cases

AWS Firecracker: Why

@estesp

● Need a narrowly focused runtime without support (today) for
general container use cases (volume mounts, general
virtualization scenarios—e.g. full device emulation, etc.)

● Attracted to security promises of Rust-based VMM
● Use via other wrappers: Weaveworks Ignite/Firekube

gVisor

@estesp

gVisor: What

@estesp

KVM/ptrace

GoferGoferGofersContainersContainers

Host Linux Kernel

Containers Sentry

Sandbox

User

Kernel

9P

runsc
OCI

seccomp + nsseccomp + ns

https://speakerdeck.com/ianlewis/the-enemy-within-running-untrusted-code-in-kubernetes

https://speakerdeck.com/ianlewis/the-enemy-within-running-untrusted-code-in-kubernetes

gVisor: What

@estesp

● Sentry: A kernel-in-userspace syscall implementation written
by Google in Golang

● Gofer: filesystem access from the container
● Used in concert with GKE; for example with Google Cloud Run

for increased isolation/security boundary
● Works standalone (OCI runc replacement) or via containerd

shim implementation (Kubernetes integration)
● Not the entire syscall surface covered in Sentry implementation
● Intercepts syscalls via ptrace (some perf. impact); also

experimental KVM-based method

gVisor: Why

@estesp

● Reducing syscalls used against “real kernel”; applications run
against gVisor syscall implementations

● Limited functionality; some applications may not work if syscall
not implemented or other incompleteness (/proc or /sys)
○ Incremental improvements always in development:

https://opensource.googleblog.com/2019/05/gvisor-one-year-later.html
● Obvious alternative to hypervisor-based isolators; less

management of a full guest (e.g. custom kernel, agents, etc.)

https://opensource.googleblog.com/2019/05/gvisor-one-year-later.html

Nabla

@estesp

Nabla: What and Why

@estesp

● IBM Research created, open source, unikernel-based sandbox
runtime

● Uses highly-restricted seccomp profile to reduce attack surface
● Similar to gVisor, but instead of user-mode kernel, uses

unikernel+application packaged approach

● Currently requires building images against special set of
unikernel-linked runtimes (Node, Python, Java, etc.)

● IBM Research pursuing ways to remove this limitation; until then
doesn’t allow generic use of any container image

Singularity

@estesp

Singularity: What and Why

@estesp

● An HPC/academic community focused container runtime
● Initially not implementing OCI, now has OCI compliant mode
● To meet HPC use model; not daemon-based, low privilege,

user-oriented runtime (e.g. HPC end user workload scheduling)

● Sylabs, creator of Singularity have recently written a CRI
implementation that drives Singularity runtime

● Uses OCI compliant mode; converts images to SIF, however
● Today is focused primarily on the academic/HPC use case

Summary

@estesp

● OCI specs (runtime, image, distribution) have enabled a
common underpinning for innovation that maintains
interoperability

● CRI has enabled a “pluggable” model for container
runtimes underneath Kubernetes

● Options are growing; lots of innovation around
sandboxes and K8s enablement via RuntimeClass

● You have to decide based on threat model/use cases

