Uber

Kubernatize Big Data and ML
Workloads @ Uber

Mayank Bansal, Data Infra, Uber
Min Cai, ML Platform, Uber

Igniting opportunity by setting the world in motion

Uber

nnnnnnnnnn

15 billion trips

15M trips per day

6 continents, 65 countries and 700 cities
100M active monthly users

3.9M active drivers

26,000+ employees worldwide

3700+ developers worldwide

Uber Eats

ETAs
Autonomous Cars
Customer Support
Dispatch
Personalization
Demand Modeling

Dynamic Pricing

Big Data and ML Use Cases at Uber

Forecasting

Maps

Fraud

Anomaly Detection
Capacity Planning

And many more...

Big Data and ML at Uber - ETAs i i

=
7))
KR

— jell P\
= \NE\LK“‘\\
priom)\

. | Mee rke
o ETAs are core to customer experience ,

o ETAs used by myriad internal systems

o ETA are generated by route-based
algorithm

o ML model predicts the route-based ETA
error

o Use the predicted error to correct the ETA

o ETAs now dramatically more accurate

’: Connecting you to nearby drivers

Big Data and ML at Uber - Dispatch

o Optimize matching of rider and driver

o Predict if open rider app will make trip

the
Golden Gate Ave Golden Gate Ave ”e
o Asian Art Museum @
San Francisco City/Hall @ of San Francisco Sivi

Bill Graham
Civic Auditorium 6

of Integral Studies

=
=

1* Finding your ride

Californiz institute. < ==

Big Data and ML at Uber - Eats

o Models used for

o Ranking of restaurants and
dishes

o Delivery times
o Search ranking

o 100s of ML models called to
render Eats homepage

a!l T-Mobile & 6:36 PM

ASAP - 74 Banks St ()

More Restaurants

!l T-Mobile =

O\ Seafﬂ CANCEL

Seafood

Seafood Noodle
Fried Seafood Basket
Seafood Fried
Seafood Curry

Search for "Seaf"

g w e

Big Data and ML at Uber - Self Driving Vehicles

Middle Front Roof ¥

AeAIIIe S et (v s

ndate gen

4 @‘k t‘a"ﬂ's 3500

15.7 MS
SOCRUMIT = MPH

e e

Playback ¥ Il 118652971660 L 000s +10s Normal speed v

Uber’s Big Data Stack

Data Analytics Tools

Data Preparation Dashboards Ad hoc Query Bl Tools
(Piper, uWorc) (Summary, Dashbuilder) (QueryBuilder) (Tableau, DSW)

Query Engines

Realtime, Pre-Aggregated Ad hoc, Interactive Complex, Batch
(AthenaX) (Presto, Vertica) (Hive)

Mobile App Events

Data Processng Engines

Device Telemetry Stream Processing Batch Processing

(Flink) (Spark, Tez, Map Reduce)

Micro-Service Events 4 4+
Compute Fabric (YARN / Mesos + Peloton => Kubernetes + Peloton)
Database Events :

3rd Party Feeds Tiered Data Lake
In-memory

Hot Warm Archival

Bulk Uploads ,1228‘.;) R (HDFS) (Cloud)

Uber’s ML Stack - Michelangelo

Data

Preparation Prototype Training

Stream
Processing Jupyter Tensorflow

(Flink) Notebook
Pytorch

Batch
Processing XGBoost

(Hive,
Spark, Tez) SparkML

DatalLake Feature
(HDFS) Store

Inference

Realtime
Prediction
Service

Batch
Prediction
Jobs

Compute Fabric (YARN / Peloton+Mesos => Kubernetes + Peloton)

Metrics
Store

Why Kubernetes ?

o Lots of features and extensions for mixed workloads
o Pod, Deployment, StatefulSet, Job, DaemonSet, etc
o Growing community and ecosystem support

o Wide adoption and native integration from open source Big Data and ML
projects

o E.g. Spark, Flink, Kafka, Tensorflow etc
o Cloud native support in AWS, GCP, and Azure as managed clusters

o Feasible extension model that allows other Uber teams such as SWN,
Storage, Data, and Security teams to build extensions.

Why Not Kubernetes As-Is?

@)

Elastic resource sharing with hierarchical resource pools

Gang scheduling for ML workloads

Support batch and stateless workload co-location
High-throughput for Big Data workloads (> 1K pod / sec)

Lack of resource oversubscription other than CPU quota / shares.
Lack of dynamic port allocation

Lack of cluster federation for multi-region and multi-zone

(]
Peloton Overview
Peloton API

o Unified Resource Scheduler for
co-locating mixed workload on
compute clusters

Job Manager

iI /
Placement __> Resource Manager

Engme
Host Manager

o Integrates with Apache Spark,
TensorFlow, YARN, uDeploy (Uber
internal)

o Can be run on-premise or in Cloud

Peloton as Kubernetes Plugins

o Idiomatic for Kubernetes ecosystem

-
o Reuse Kubernetes APl and components Syl
like api-server, etcd, kubelet. Statsiess J Bawn W Statetule
. . Cor;]t‘r):IIer Controller Cor;]t::ller
o Support all Kubernetes drivers for Big beloton Scheduler l
Data / ML applications — \V/
H H Q (sEtg?ei?:ll API Server ——> Etcd
o Optimized for Big Data / ML workloads Batch) sl /ﬁ\
o Elastic resource sharing
Kubelet """ Kubelet

o Gang scheduling
o High-throughput for Big Data workloads

Hierarchical Resource Pools

R

<R, L, s>/ \R, L, s>

t Limit (L)
- Entitlement (E)

Share (S)

- Reservation(R)

CPU/Mem/Disk/GPU

Resource Pool as Kubernetes CRD

apiVersion: "peloton.uber.com/vlalphal" $ kubectl get CustomResourceDefinition

kind: "ResourcePool" NAME AGE
metadata: resourcepools.peloton.uber.com 2h
name: "marketplace.uber.com"
spec: $ kubectl apply -f respool-marketplace.yaml
resources: resourcepool.peloton.uber.com "marketplace.uber.com" created
reservation:
cpu: 512 $ kubectl get ResourcePool
memory: "256G" NAME AGE
limit: marketplace.uber.com 5s
cpu: 1024
memory: "1024G"
share:
cpu: 1

memory: 4

Peloton Scheduler Architecture

ResourcePool
Watcher

Update
ResourcePools

Scheduling
Pod

Scheduler —

ResourcePoolTree

Pod Preemption

Preemptor [

Enqueue

Pods
. tii
Entitlement SURESUIRG

Calculator —

Capacity
Slack Dequeue

. Pods
Bind Pods
Node
Node Placement
==l A e — ikl I ——

Get Nodes

16

Elastic Resource Pool Example

Limit: 100 Limit: 100

Reservation: 20 Reservation: 20

Limit: 100

Reservation: 20

17

Elastic Resource Pool Example (cont.)

RP2
Share=1

Limit: 100 Limit: 100 Limit: 100
Demand:80
Allocated: 45 Allocated: 45
Reservation: 20 Reservation: 20 Reservation: 20
Demand: 10
Allocated: 10 I

RP3
Share=1

]

Demand:80

18

Elastic Resource Pool Example (cont.)

Limit: 100 Limit: 100

Demand: 50 Preempted
-(5+6.5)
Allocated: 33 Allocated: 33

Reservation:20 Reservation:20

Demand:80

Limit: 100

Preempted
-(5+6.5)%

Allocated: 33

Reservation:20

Demand:80

11,

Spark on

Peloton +

7
Q
e
(),
C
| -
)
0O
-
¥4

https://www.mindproject.io/

Apache Spark @ Uber
o Challenges for Spark on YARN y

APACHE 'S
o Lack of Docker support Spr

o Lack of big containers support
o Challenges for Spark on Mesos

o Lack of elastic resource sharing

o Spark job registers as a new framework

o Spark on Peloton

o Custom spark drivers for Peloton (v2.1, v2.3, v2.4)

o In production for 2 years

* Apache Hadoop,, Spark, and Mesos logos are either registered trademarks or trademarks of the Apache
Software Foundation in the United States and/or other countries. No endorsement by The Apache]
Software Foundation is implied by the use of these marks. TensorFlow and the TensorFlow logo are|
rademarks of Google Inc. Redis is a trademark of Redis Labs Ltd. Any rights therein are reserved to Redis
Labs Ltd. Any use by Uber Technologies is for referential purposes only and does not indicate any
sponsorship, endorsement or affiliation between Redis and Uber Technologies.

o 6+ production clusters

21

Why Spark on Kubernetes ?

e Kubernetes is becoming de facto for ML/Al workloads

® [Expensive to maintain custom Peloton drivers for Spark

e Unify Big data and ML workloads in one resource scheduT'e"F'l

= =
A \

o Remove cluster fragmentation

o Prioritize workloads

e lLeverage Kubernetes growing community and ecosystem

o Out of the shelf Spark driver support

22

How Does Spark on Kubernetes Work ?

(5) Monitor
Executors
and Launch
Tasks

(3) Launch
Executors

(2) Launch
Driver

(1) Submit Spark Job

- Peloton
- API Server - BT = Scheduler

Spark II
Executor

(4) Launch
Executors P

Spark II
Executor

23

Spark on Kubernetes Challenges

e Lack of elastic resource sharing
o Solution: Peloton resource pools
e Only support global priority
o Solution: Priorities at org / resource pool level

e Lack of dynamic resource allocation support

o Solution: remote spark shuffle service
e Lack of support for secure HDFS

o Solution: Pass Kerberos token as Kubernetes secret

24

How Does Spark Shuffle Service Work?

Mapper Host Mapper Host

Partition 1
Partition 1
— Index File _
Partition 2
Partition 2
Data File
Data File =

Local Shuffle
Service

Executor

Spill File n

Reduce Task
Shuffle Reader
Memory Buffer| -

25

Limitations of Spark Shuffle Service

e SSD wearing out Issues
e Reliability
e Kubernetes dynamic allocation

e Collocation

26

Remote Spark Shuffle Service

Executor Executor

L ap ross] { Cap st
Shuffle Manager Shuffle Manager

Remote Shuffle Service

Executor Executor

o s "
Shuffle Manager Shuffle Manager

Remote Spark Shuffle Service - Production Status

e |n Production from last 3 months for YARN and Peloton on Mesos
e Thousand’s of application running every day

e Job latencies are on par with external shuffle

e Working towards on boarding all Spark workloads

e Open Source soon

28

GPUs &
Deep Learning

Deep Learning Use Cases

P | ~
e Self-Driving Vehicles e —
e Trip Forecasting i X
L

Fraud Detection

e More ..

Distributed TensorFlow Challenges

e Elastic GPU Resource Management

e |ocality and Network-aware Placement
e Task Discovery - XA
e Gang Scheduling | |

e Failure Handling

31

Gang Scheduling

® A subset of tasks in a job can be specified for gang scheduling
e (Gang tasks are a single scheduling unit L
e Admitted, placed, preempted, and killed as a group

e (Gang tasks are independent execution units

® Run in separate containers and may fail independently

e (Gang execution is terminated if a gang task fails and cannot be

restarted

B S
e
i\ bY

32

Distributed TensorFlow on Kubernetes

\WE |

lLaunch Pod

Kubelet Kubelet

Resolve Resolve

P:-)éz-lmt S_erver Worker
ontainer Container

Param Server
Worker Pod

Resolve

Worker

S
o
=
(]
(2]
=
o
S
[
o

Worker Pod

33

B
INRE B

LENE]

LidRaiEl |

Workload

Collocation

Colocating Batch and Stateless Workload

e Aim to save ™~ 20-25% compute resources via collocation /’
T PRI LU e _
\' Hj.“ .’7:2‘;.‘ \
e Challenges Sy /
o Disk I/O = 4\1)
e “‘, HR-ARZ)
o Network On Machine e | / <
o CPU caches L H /)
o Memory Oversubscription /

e Dynamic Partitions

o Create virtual partitions
o Oversubscribe physical resources
o Move machines if need to each partitions

35

Dynamic Partition Collocation

Cluster

Stateless Partition

50-60%

40-50%

Batch Partition

36

Oversubscription

80%

' 70%

60%

Stateless Utilization | — »
-~J
o
S
Batch Utilization

| ; |
0 Node-20 Node-230 Node-331 Node-431 Node-N' 0 Node-20 Node-230 Node-331 Node-431 Node-N

Nodes

Nodes

37

Dynamic Partition Collocation Architecture

Peloton Scheduler < Node Advisor
netes Cluster

38

Dynamic Partition Collocation

e |[oad Aware Placement
o Not causing churn into system

e Batch and Stateless Scorers
o Find best node to be evicted

e Virtual partition within batch partition
o Contain imp batch jobs together

e Break Glass

o Handle unusual spikes

39

Summary

e Kubernetes is the future for BigData and ML workloads

e Peloton as K8s scheduler POC is done

e Peloton on Mesos is in Production for stateless and batch

e Looking for collaboration to enable Kubernetes for BigData and ML

workloads

40

We are hiring!

www.uber.com/careers/

Uber

eng.uber.com/peloton

Proprietary and confidential © 2019 Uber Technologies, Inc. All rights reserved. No part of this
document may be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval systems, without
permission in writing from Uber. This document is intended only for the use of the individual or entity
to whom it is addressed and contains information that is privileged, confidential or otherwise exempt
from disclosure under applicable law. All recipients of this document are notified that the information
contained herein includes proprietary and confidential information of Uber, and recipient may not
make use of, disseminate, or in any way disclose this document or any of the enclosed information to
any person other than employees of addressee to the extent necessary for consultations with

authorized personnel of Uber.

