

Kubernetes in Your 4x4
Continuous Deployment Directly to the Car

RafałKowalski

Rafał
Kowalski
Cloud Solution Architect @ Grape Up
PhD @ Polish Academy of Sciences

b3rnoulli@b3rnoulli

Continuous Delivery

Commit Build Test Stage Deploy QA

Production

Continuous Integration/Delivery

Development

Code commit

Continuous Deployment

Commit Build Test Stage Deploy QA

Production

Continuous Deployment

Development

Code commit

Deploy QA

Deployment in the Cloud

Cloud Foundry

Kubernetes

Cloudboostr

Manifest
file

Deployment to the Car

Car
Manifest
file

Car architecture

radar

accelerometer

rain sensor engine speed sensor
oil pressure sensor

camera

pedal sensor battery sensor door sensor

gesture sensor

Electronic Control Unit

Old fashined deployment

0 1 0 1 1 1 0 1 0 0 …..

Consolidation of Electronic Control Units in modern cars

High Performance ECU

Connected Car

0 1 0 1 1 1 0 1 0 0 …..

Kubernetes in the car
Quite challenging

Kubernetes consume a lot of resources
(up to 4gb of RAM)

Kubernetes wasn’t designed for
embedded software

Kubernetes has a lot of features not
required in edge devices

Most of Kubernetes distributions don’t
support ARM

Kubernetes in the car
First try – KubeEdge

• Fits resource constraints
environments

• Support offline operations

• MQTT-based communication

• SDK based Development for
Device Addition etc.

Kubernetes in the car
First try – KubeEdge

Database

MetaManager

DeviceTwin

EdgeHub

EventBus

ServiceBus

Edged

CloudHub

EdgeController

DeviceController

k8S API Server

Cloud

Edge

device

Kubernetes in the car
Revisited architecture

ECUs as workers

Let’s build the pipeline

Commit Build Test Stage Deploy QA

Continuous Deployment

Development

Code commit

Production

ECU

Let’s build the pipeline

container

deployment

container

Unstable connection

CloudHub

EdgeController

DeviceController

Kubernetes in the car
First try – KubeEdge

Database

MetaManager

DeviceTwin

EdgeHub

EventBus

ServiceBus

Edged

CloudHub

EdgeController

DeviceController

k8S API Server

Cloud

Edge

device

Websocket

Every service has to
be containarized

How to deploy software based on
geographical considerations ?

Kubernetes in the car
Second try – k3s

• Kubernetes lightweight
distribution

• Fits resource constraints
environments

• Support offline operations

• 200MB disk space and 512MB
RAM

Kubernetes in the car
Second try– k3s

Adds

• Simplified installation

• SQLite3 support in addition to
etcd

• TLS management

• Automatic Manifest and Helm
Chart management

• containerd, CoreDNS, Flannel

• Legacy and non-default features

• Alpha features

• In-tree cloud providers

• In-tree storage drivers

• Docker (optional)

Removes

k3s architecture

Process

SQLite API Server Tunnel Proxy

Scheduler
Controller
Manager

k3s Server

Tunnel Proxy Kube-proxy Flannel

Kubelet

k3s Agent

containerd

Pod Pod Pod

Process

Let’s build the pipeline

container

manifest

container

Digital Twin pattern
in continuous deployment pipeline

container

deployment

container

Device
Controller

Unstable connection

to the rescue!

RSocket is framed, message-based, binary, bi-directional protocol ,
based on reactive streams back pressure and four-elements
interaction model

• Interaction is broken down into frames

• It can run on top of the TCP / Web Socket

/ Aeron

• Payload could be anything – even large

thing

• Rich interaction model

Fire & Forget
Request -
Response

Request-
Stream

Channel

Resumability in

Frame
Cache

Frame
Cache

Cloud
Component Car

Digital Twin
in continuous deployment pipeline

container

deployment

container

Device
Controller

Unstable connection

Digital Twin
as a deployable units cache

container

manifest

container

Device
Controller

Let’s put the deployment flow together

R
S

O
C

K
E

T

Car
Agent

R
S

O
C

K
E

T

mongodb layer by layer

ABS

What if I have thousands of cars to update ?

Digital Twin

Query
Language

• Nothing changes – cars will act based on the

information provided by Digital Twin

• Twin enables selective deployment

• Time to live support

What about rollback?

Car
Agent

R
S

O
C

K
E

T

manifest

• Car has it’s own registry, so that the
switch to previous version of the
component is a matter of seconds

• The car agent is responsible of
monitoring of the deployed
components

• Usually two versions of software
running in paralel (canary deployment)

Summary

• Thanks to 𝝁Paas solutions (like KubeEdge, k3s) we can run
“cloud” on the edge. It applies only to large/complex devices,
usually we are not fully cloud native.

• Connectivity and number of devices to handle are main
concerns in terms of software delivery to the car – both can
be addressed by Digital Twin pattern

• 𝝁Paas and RSocket helps in unification of the runtime
environment and the communication protocols

