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Deployment to the Car
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Car architecture
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Old fashined deployment
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Consolidation of Electronic Control Units in modern cars

High Performance ECU



Connected Car
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Kubernetes in the car
Quite challenging

Kubernetes consume a lot of resources 
(up to 4gb of RAM)

Kubernetes wasn’t designed for 
embedded software

Kubernetes has a lot of features not 
required in edge devices

Most of Kubernetes distributions don’t 
support ARM



Kubernetes in the car
First try – KubeEdge

• Fits resource constraints 
environments

• Support offline operations

• MQTT-based communication

• SDK based Development for 
Device Addition etc.



Kubernetes in the car
First try – KubeEdge
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Kubernetes in the car
Revisited architecture

ECUs as workers



Let’s build the pipeline
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Let’s build the pipeline
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Kubernetes in the car
First try – KubeEdge
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Websocket

Every service has to 
be containarized

How to deploy software based on 
geographical considerations ?



Kubernetes in the car
Second try – k3s

• Kubernetes lightweight 
distribution

• Fits resource constraints 
environments

• Support offline operations

• 200MB disk space and 512MB 
RAM



Kubernetes in the car
Second try– k3s

Adds

• Simplified installation

• SQLite3 support in addition to 
etcd

• TLS management

• Automatic Manifest and Helm
Chart management

• containerd, CoreDNS, Flannel

• Legacy and non-default features

• Alpha features

• In-tree cloud providers

• In-tree storage drivers

• Docker (optional)

Removes



k3s architecture
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Let’s build the pipeline
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Digital Twin pattern
in continuous deployment pipeline
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to the rescue!

RSocket is framed, message-based, binary, bi-directional protocol , 
based on reactive streams back pressure and four-elements 
interaction model

• Interaction is broken down into frames

• It can run on top of the TCP / Web Socket 

/  Aeron

• Payload could be anything – even large 

thing

• Rich interaction model

Fire & Forget
Request -
Response

Request-
Stream

Channel 
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Digital Twin
in continuous deployment pipeline
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Digital Twin
as a deployable units cache
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Let’s put the deployment flow together
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What if I have thousands of cars to update ?

Digital Twin

Query 
Language

• Nothing changes – cars will act based on the 

information provided by Digital Twin

• Twin enables selective deployment

• Time to live support



What about rollback?

Car
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• Car has it’s own registry, so that the 
switch to previous version of the 
component is a matter of seconds

• The car agent is responsible of 
monitoring of the deployed
components

• Usually two versions of software 
running in paralel (canary deployment) 



Summary

• Thanks to 𝝁Paas solutions (like KubeEdge, k3s) we can run 
“cloud” on the edge. It applies only to large/complex devices, 
usually we are not fully cloud native.

• Connectivity and number of devices to handle are main
concerns in terms of software delivery to the car – both can
be addressed by Digital Twin pattern

• 𝝁Paas and RSocket helps in unification of the runtime 
environment and the communication protocols


