
Kubernetes at Reddit: Tales from Production
Greg Taylor – EM, Reddit Infrastructure
/u/gctaylor

What is Reddit?

Example: /r/kubernetes

By the numbers

5th/20th Alexa Rank (US/World)

500M+ Monthly active users

140K+ Communities

16M+ Posts per month

2.8B+ Votes per month

Long ago 2016

Rapid growth

Enter: Microservices

Microservices without empowerment

Enter: InfraRed

InfraRed Development and Launch

Org-wide Onboarding

Org-wide Onboarding: The Plan

1. Introduce a launch schedule with pre-allocated dates.

2. Allocate two weeks of hands-on time per service launch.

3. Expect to spend at least half of that in training.

4. Address gaps in docs, process, and automation as we go.

5. We’ll eventually reach an organizational critical mass.

Critical mass is real!

Org-wide Onboarding: What went well

Empowered service owners.

Org-wide Onboarding: What went well

Tough sledding until critical mass.

Org-wide Onboarding: What didn’t go well

Uneven post-launch support for new service owners.

Org-wide Onboarding: What didn’t go well

Build central SRE org sooner.

Org-wide Onboarding: What we’d do differently

Org-wide Onboarding: Where we are today

● Most engineering teams have adopted InfraRed/Kubernetes.

● Embedded SREs in most prolific service-owning divisions.

● Support load is manageable.

● More work to be done on launch automation, docs, tooling, and
training.

Managing our Clusters

Managing our clusters: Prior reality

us-east-1
1b1a 1c

Managing our clusters: The Plan (Cluster groups)

us-east-1
1b1a 1c

Mirrored clusters have prevented outages.

Managing our clusters: What went well

Cost and latency savings from silo’d AZs.

Managing our clusters: What went well

More clusters, more admin overhead.

Managing our clusters: What didn’t go well

Start with single-AZ clusters for critical environments.

Managing our clusters: What we’d do differently

Managing our clusters: Where we are today

● Essential environments use the cluster group model.

● Everything else stays multi-AZ.

● We operate 19 clusters.

● Spinnaker takes the drudge work out of multi-cluster deploys.

Cluster Policy

Cluster policy: The Plan

1. Needed to protect against mistakes or malicious activity.

2. Ex: Missing cost tags, duplicate Ingress hosts.

3. RBAC can’t catch these kinds of issues.

4. Planned to use Open Policy Agent to
introduce guard rails.

Deny external-facing load balancer whose name isn’t whitelisted.
deny[explanation] {
 input.request.kind.kind == "Service"
 input.request.operation == "CREATE"
 loadbalancer.is_external_lb
 namespace := input.request.namespace
 name := input.request.object.metadata.name
 not whitelisted[{"namespace": namespace, "name": name}]
 explanation = sprintf(
 "Service %v/%v is an external load balancer but has not
 Been whitelisted", [namespace, name])
}

Simple white list.
whitelisted[{"namespace": "retail", "name": "payment_lb"}]

Nice balance of empowerment and safety.

Cluster policy: What went well

Death spiral on one of our busiest clusters.

Cluster policy: What didn’t go well

Test OPA on a stressed control plane.

Cluster policy: What we’d do differently

Cluster policy: Where we are today

● Open Policy Agent runs on all of our clusters.

● Policies are in place for the scariest of possibilities.

● OPA’s monitor mode has been handy for audits and experimentation.

YAML

YAML: The Plan

1. Needed to minimize service owner YAML drudgery.

2. Wanted to avoid premature abstraction.

3. Decided to stay close to the community and use Helm.

4. Aimed to auto-generate Helm Charts for Reddit (baseplate) services.

5. Planned to pass Helm Charts to Spinnaker to be rendered/deployed.

Auto-generated Helm was a great starting point.

YAML: What went well

Spinnaker has complemented Helm well.

YAML: What went well

Overhead of managing divergent Helm Charts.

YAML: What didn’t go well

Resource generator for Baseplate services
instead of Helm.

YAML: What we’d do differently

conf = release.config(
 name = app_name,
 filename = "test.yml",
)
app = release.app(
 name = app_name,
 config = conf,
 ports = [http],
 requests = bp.resources(cpu = "500m"),
)
http_svc = release.service(
 name = app_name,
 ports = [http],
)

YAML: Where we are today

● Good understanding of usage cases. Best practices established.

● Baseplate makes our services look and act the same.

● Starlark-powered resource generator instead of charts or megachart.

● Helm Charts will stick around for non-Reddit services.

Dev Environment

Dev Environment: The Plan

1. Needed a dev environment that looked like production.

2. Wanted to use the same Helm Chart for local dev, staging, and prod.

3. Needed to be able to develop multiple microservices in parallel.

4. Something something service dependencies.

5. Planned on using Skaffold paired with local minikube.

When everything worked, it was nice.

Dev Environment: What went well

Constant breakage and flakiness.

Dev Environment: What didn’t go well

Multi-service dev woes.

Dev Environment: What didn’t go well

Focus on developing against remote clusters.

Dev Environment: What we’d do differently

Dev Environment: Where we are today

● Shifted from Minikube to development against a remote dev clusters.

● Swapped Skaffold out for Tilt.

● Starlark resource generator instead of service Helm Charts.

● Master branch of dependencies auto-deploys to dev cluster.

● Multi-service dev is possible with a minor config tweak.

Next challenges

Next challenges

● Fully self-serve service launches.

● Istio all of the things.

● Flesh out of dev environment story.

● Start optimizing for cost and density.

● Continue to build out our SRE organization.

Presenter Info + Resources

● Greg Taylor - Reddit Infrastructure
● /u/gctaylor
● @gctaylor

● reddit.com/r/kubernetes
● redditblog.com/topic/technology

reddit.com/jobs

https://www.reddit.com/user/gctaylor/
https://twitter.com/gctaylor
http://reddit.com/r/kubernetes
http://redditblog.com/topic/technology

