KubeCon

X

CloudNativeCon

Kubeflow: Multi-Tenant, Self-Serve,

ML Platform

kKunming@google.com
kam.d.kasravi@intel.com

mailto:kunming@google.com
mailto:kam.d.kasravi@intel.com

Enabling the end user

Multi-tenant self-serve workspaces for developers and data scientists
Do not saddle the end user with k8s details

Deploy job to the right CPU/Accelerated hardware
Kustomize overlays for different cpu/accelerated hardware combinations

O

Kubeflow: A platform for building ML products

O

Leverage containers and Kubernetes to solve the challenges of building ML products

o Reduce the time and effort to get models launched
Why Kubernetes
o Kubernetes has won
o Kubernetes runs everywhere
o Enterprises can adopt shared infrastructure and patterns for ML and non ML services

(@]

Knowledge transfer across the organization

Kubeflow is open

o

(@]
©)
@)

No lockin

200 Members

20+ Organizations

Stats available @ http://devstats.kubeflow.org

https://github.com/kubeflow/community/blob/master/member_organizations.yaml
http://devstats.kubeflow.org

Kubeflow Cloud Providers

e Google Kubernetes Engine
e AWS
e Azure

Kubeflow Native K8

e Deployable to any k8 existing cluster

O

ML Applications

e Goal: applications for every stage of ML
e Examples:

O

@)

@)

o

o

O

Experimentation / Data Exploration
m Jupyter / Notebook Spawner
Training
m Tensorflow & Pytorch distributed
training managed through K8s CRDs
m Katib - HP Tuning
Workflows:
m Pipelines
Metadata
m Tracking and managing metadata of
ML workflows
Feature Store
m Feast (from GOJEK)

ISTIO
Kati b
Load Balancers

@-

oC SELDOWN NFS

Auth Plugins
’ X
Jupyterht
o~ @ Data
é Warehouse

Serving

Object Store

ﬁ Qrgo

Multi Tenancy for End Users

Users will operate on same k8s cluster
while each user has their own workspace

Istio Gateway A

Enforces Auth

hosting their services. Workspaces are
logically isolated: each user can only
access services to their own workspace.

y \L\;

James

Personal Profile

Sarah

Personal Profile

MLEngineers

Shared Profile

Training Training Training
Notebooks (TFJob, PyJob) Notebooks (TFJob, PyJob) Notebooks (TFJob, PyJob)
HP Tuning Serving HP Tuning Serving HP Tuning Serving
Pipelines Metadata Pipelines Metadata Pipelines Metadata
Namespace Namespace Namespace

e

Kubeflow

kubernetes

O

K8s Multi-Tenancy Challenges

Define clear user workspace boundary for access isolation
K8s in-cluster network is transparent
o Services are by default visible from all pods
o Need to establish network access control
e Access control around traffic through shared ingress
o Users might access services in their own workspaces through same ingress.
o Need to establish access control behind ingress: user can only access workspace after permission
check
Workspace access sharing & revoke
o Each workspace owner should be able to share/revoke workspace access
o Access sharing should not leak owner privilege while allow invited user operating on CRs
All policies, roles and bindings involved should behave in consistency.

O

Kubeflow Multi-Tenancy (Profiles)

O

Define user workspace as namespace and build access control around it
o Manage user access to namespace through k8s rbac policy.
Leverage lIstio to control in-cluster traffic
o By default requests to user workspaces are denied unless allowed by Istio Rbac
Leverage ldentity-Aware Proxy and Istio to control traffic through ingress
o ldentity user request through ldentity-Aware Proxy.
o Istio then do rbac check on request target workspace and identity
Enable workspace access sharing & revoke
o Workspace owners can share/revoke workspace access with other users through kubeflow Ul
o Invited users will have k8s edit permission plus permission to operate kubeflow CRs
Self-serve
o New user can self-register to create and own their workspace through kubeflow Ul
Kubeflow Profile CR to control all policies, roles and bindings involved and guarantee consistency.
o Offer plugin interface to manage external resource/policy outside k8s, eg. access control of public
cloud APIs

Kubeflow Access Control

e User access through kubectl: controlled by
k8s rbac policy.

e User access through browser: controlled by
istio rbac policy.

e Kubeflow multi-tenancy is implemented
k8s-native way, new services can be
integrated easily.

O

Access Ul with
SSO identity
compatible proxy

Kubectl CLI

access

Qstio Gateway)

deny

Istio rbac:
allow or

Kubeflow
kfam & profile
access policy

K8s Cluster
685 API

edit

)

([K8s rbac:
L allow or deny

]

\
Istio service mesh \
[Kubeflow }/
Services/APls
4
Namespace

Kubeflow Profile

Created by the user via cli: kubectl apply -f myprofile.yaml or kubeflow Ul

apiVersion: kubeflow.org/v1alpha
kind: Profile
metadata:
name: $(name)
spec:
owner: $(owner)

Data scientists use Profiles to create various types of workspaces,
where they can run training, inference, etc.

%

ff.‘ Kubeflow

Create Kubeflow Profile ~_

yaml
apiVersion: kubeflow.org/vibeta1 Namespace
kind: Profile A . llecti a -
namespace is a collection of Kubeflow services. Resources created within a
metadata: namespace are isolated to that namespace. By default, a namespace will be created
name: demo-namespace # profile name is also namespace name for you.
spec:
owner: Namespace Name
kind: User |— demo-namespace
name: useri@email.com # replace with the email of the user
plugins:
- kind: Workloadldentity
spec:

gcpServiceAccount: useri-gcp@project-id.iam.gserviceaccount.com

O

Share Kubeflow Profile with other users

1’;0‘ Kubeflow @ AllNamespaces ¥
A

Manage Contributors

O

o
a

<— owner

Account info (Cluster Admin)

abhishek@google.com

Namespace memberships

Namespaces Your role contributor

kubeflow-abhishek Owner

Contributors to your namespace - kubeflow-abhishek

Email Addresses
(kunming@google.com X | add by email address

Cluster namespaces

Namespace Owner Contributors
demo=-namespace kunming@google.com
kubeflow-abhishek abhishek@google.com kunming@google.com

Kubeflow Device Overlays (accelerators, cpus)

e Device Overlays into Profiles, Pods
e Uses Profile extensions, Tekton Pipelines
e Can also be applied to Argo workflows and other pipeline engines

O

Kubeflow Profile adds cpu/accelerator quotas

Has a quotas section that is added to the namespace

apiVersion: kubeflow.org/v1alpha
kind: Profile
metadata:
name: $(name)
spec:

Z‘L’j":g: $(owner) This could be added by an admission-controller or

hard: — gitops
requestsCpu: $(requestsCpu)
requestsMemory: $(requestsMemory)
requestsGpu: $(requestsGpu)
limitsCpu: $(limitsCpu)
limitsMemory: $(limitsMemory)
<vendor/device>: <value>

O

Tekton Pipeline to run a model

kfctl can deploy manifest files from different repos or on disk

tk/tk-pipeline-run/overlays/cpu-node-selector

—— kustomizationyaml
—— params.env

—— params.yaml

— pipeline-run.yaml

O

Tekton Pipeline to run a model
Adds a podTemplate.nodeSelector.cpu value

tk/tk-pipeline-run/overlays/cpu-node-selector/pipeline-run.yaml

apiVersion: tekton.dev/v1alpha1
kind: PipelineRun
metadata:

name: $(generateName)
spec:

podTemplate:

nodeSelector:
cpu: "$(cpuType)"

O

Tekton Pipeline to run a model

kfctl can deploy manifest files from different repos or on disk

tk/tk-pipeline/overlays/run-model-task

—— config-map.yaml
—— kustomizationyaml
—— params.env

—— params.yaml

—— pipeline_patch.yaml
—— task.yaml

tk/tk-pipeline/overlays/run-model-task-nvidia
kustomization.yaml
—— params.env

—— params.yaml

— task patch.yaml

%

Tekton Pipeline to run a model
run-model example

tk/tk-pipeline-run/overlays/run-model-task/task.yaml

apiVersion: tekton.dev/v1alpha1
kind: Task
metadata:
name: run-model
spec:
inputs:
params:
- name: imageName
type: string
steps:
- name: run-model
image: $(inputs.params.imageName)
command: ["/bin/bash", "/run-model/run-model.sh"]

%

Tekton Pipeline to run a model
task is patched to add gpu info

tk/tk-pipeline-run/overlays/run-model-task-nvidia/task_patch.yaml

- op: add
path: /spec/steps/O/resources
value:
limits:
nvidia.com/gpu: $(accelerator_count)

O

Tekton Pipeline to run a model

config file to run a model on a node with cpu=skylake, nvidia.com/gpu

kfctl apply -f kfdef/run-model-gpu.yaml

- kustomizeConfig: - kustomizeConfig:

overlays: overlays:

- run-model-task - application

- run-model-task-nvidia - cpu-node-selector

parameters: parameters:

- name: accelerator_count - name: cpuType
value: 1 value: skylake

repoRef: repoRef:
name: manifests name: manifests
path: tk/tk-pipeline path: tk/tk-pipeline-run

name: tk-pipeline name: tk-pipeline-run

e

DEMO

- Akubeflow deployment that created a GKE cluster with 2 nodes

CPU Platform Accelerator Type Machine Type Image Type
Intel Skylake gpu nvidia-tesla-t4 n1-standard-8 cos
Intel Cascade Lake - c2-standard-8 ubuntu

- Run the same tensorflow model within a Profile but with different overlays

Pod limits selects the accelerator type (nvidia.com/gpu: ‘1’)
Pod affinity selects the cpu platform (cpu: cascadelake)

w

1

Kubeflow

Thank You

e Kubeflow website - https://www.kubeflow.org/
e Code - https://github.com/kubeflow/kubeflow

22

https://www.kubeflow.org/
https://github.com/kubeflow/kubeflow

