
Kubeflow: Multi-Tenant, Self-Serve,

ML Platform

kunming@google.com
kam.d.kasravi@intel.com

mailto:kunming@google.com
mailto:kam.d.kasravi@intel.com

Enabling the end user
● Multi-tenant self-serve workspaces for developers and data scientists

2

● Do not saddle the end user with k8s details
● Deploy job to the right CPU/Accelerated hardware
● Kustomize overlays for different cpu/accelerated hardware combinations

Kubeflow: A platform for building ML products

● Leverage containers and Kubernetes to solve the challenges of building ML products
○ Reduce the time and effort to get models launched

● Why Kubernetes
○ Kubernetes has won

○ Kubernetes runs everywhere

○ Enterprises can adopt shared infrastructure and patterns for ML and non ML services

○ Knowledge transfer across the organization

● Kubeflow is open

○ No lock in

○ 200 Members

○ 20+ Organizations

○ Stats available @ http://devstats.kubeflow.org

3

https://github.com/kubeflow/community/blob/master/member_organizations.yaml
http://devstats.kubeflow.org

Kubeflow Cloud Providers

4

● Google Kubernetes Engine
● AWS
● Azure

Kubeflow Native K8

● Deployable to any k8 existing cluster

ML Applications
● Goal: applications for every stage of ML
● Examples:

○ Experimentation / Data Exploration
■ Jupyter / Notebook Spawner

○ Training
■ Tensorflow & Pytorch distributed

training managed through K8s CRDs
■ Katib - HP Tuning

○ Workflows:
■ Pipelines

○ Metadata
■ Tracking and managing metadata of

ML workflows
○ Feature Store

■ Feast (from GOJEK)

Multi Tenancy for End Users

Users will operate on same k8s cluster
while each user has their own workspace
hosting their services. Workspaces are
logically isolated: each user can only
access services to their own workspace.

K8s Multi-Tenancy Challenges
● Define clear user workspace boundary for access isolation
● K8s in-cluster network is transparent

○ Services are by default visible from all pods
○ Need to establish network access control

● Access control around traffic through shared ingress
○ Users might access services in their own workspaces through same ingress.
○ Need to establish access control behind ingress: user can only access workspace after permission

check
● Workspace access sharing & revoke

○ Each workspace owner should be able to share/revoke workspace access
○ Access sharing should not leak owner privilege while allow invited user operating on CRs

● All policies, roles and bindings involved should behave in consistency.

7

Kubeflow Multi-Tenancy (Profiles)
● Define user workspace as namespace and build access control around it

○ Manage user access to namespace through k8s rbac policy.
● Leverage Istio to control in-cluster traffic

○ By default requests to user workspaces are denied unless allowed by Istio Rbac
● Leverage Identity-Aware Proxy and Istio to control traffic through ingress

○ Identity user request through Identity-Aware Proxy.
○ Istio then do rbac check on request target workspace and identity

● Enable workspace access sharing & revoke
○ Workspace owners can share/revoke workspace access with other users through kubeflow UI
○ Invited users will have k8s edit permission plus permission to operate kubeflow CRs

● Self-serve
○ New user can self-register to create and own their workspace through kubeflow UI

● Kubeflow Profile CR to control all policies, roles and bindings involved and guarantee consistency.
○ Offer plugin interface to manage external resource/policy outside k8s, eg. access control of public

cloud APIs

8

Kubeflow Access Control

● User access through kubectl: controlled by
k8s rbac policy.

● User access through browser: controlled by
istio rbac policy.

● Kubeflow multi-tenancy is implemented
k8s-native way, new services can be
integrated easily.

Kubeflow Profile

apiVersion: kubeflow.org/v1alpha1
kind: Profile
metadata:
 name: $(name)
spec:
 owner: $(owner)

Created by the user via cli: kubectl apply -f myprofile.yaml or kubeflow UI

Data scientists use Profiles to create various types of workspaces,
where they can run training, inference, etc.

Create Kubeflow Profile

apiVersion: kubeflow.org/v1beta1
kind: Profile
metadata:
 name: demo-namespace # profile name is also namespace name
spec:
 owner:
 kind: User
 name: user1@email.com # replace with the email of the user
 plugins:
 - kind: WorkloadIdentity
 spec:
 gcpServiceAccount: user1-gcp@project-id.iam.gserviceaccount.com

yaml
ui

owner

contributor

Share Kubeflow Profile with other users

Kubeflow Device Overlays (accelerators, cpus)

● Device Overlays into Profiles, Pods
● Uses Profile extensions, Tekton Pipelines
● Can also be applied to Argo workflows and other pipeline engines

Kubeflow Profile adds cpu/accelerator quotas

apiVersion: kubeflow.org/v1alpha1
kind: Profile
metadata:
 name: $(name)
spec:
 owner: $(owner)
 quota:
 hard:
 requestsCpu: $(requestsCpu)
 requestsMemory: $(requestsMemory)
 requestsGpu: $(requestsGpu)
 limitsCpu: $(limitsCpu)
 limitsMemory: $(limitsMemory)
 <vendor/device>: <value>

Has a quotas section that is added to the namespace

This could be added by an admission-controller or
gitops

Tekton Pipeline to run a model
kfctl can deploy manifest files from different repos or on disk

tk/tk-pipeline-run/overlays/cpu-node-selector
 kustomization.yaml
 params.env
 params.yaml
 pipeline-run.yaml

tk/tk-pipeline-run/overlays/cpu-node-selector/pipeline-run.yaml

apiVersion: tekton.dev/v1alpha1
kind: PipelineRun
metadata:
 name: $(generateName)
spec:
 podTemplate:
 nodeSelector:
 cpu: "$(cpuType)"

Adds a podTemplate.nodeSelector.cpu value

Tekton Pipeline to run a model

Tekton Pipeline to run a model

tk/tk-pipeline/overlays/run-model-task
 config-map.yaml
 kustomization.yaml
 params.env
 params.yaml
 pipeline_patch.yaml
 task.yaml

tk/tk-pipeline/overlays/run-model-task-nvidia
 kustomization.yaml
 params.env
 params.yaml
 task_patch.yaml

kfctl can deploy manifest files from different repos or on disk

tk/tk-pipeline-run/overlays/run-model-task/task.yaml

apiVersion: tekton.dev/v1alpha1
kind: Task
metadata:
 name: run-model
spec:
 inputs:
 params:
 - name: imageName
 type: string
 steps:
 - name: run-model
 image: $(inputs.params.imageName)
 command: ["/bin/bash", "/run-model/run-model.sh"]

run-model example

Tekton Pipeline to run a model

tk/tk-pipeline-run/overlays/run-model-task-nvidia/task_patch.yaml

- op: add
 path: /spec/steps/0/resources
 value:
 limits:
 nvidia.com/gpu: $(accelerator_count)

task is patched to add gpu info

Tekton Pipeline to run a model

kfctl apply -f kfdef/run-model-gpu.yaml

config file to run a model on a node with cpu=skylake, nvidia.com/gpu

Tekton Pipeline to run a model

 - kustomizeConfig:
 overlays:
 - run-model-task
 - run-model-task-nvidia
 parameters:
 - name: accelerator_count
 value: 1
 repoRef:
 name: manifests
 path: tk/tk-pipeline
 name: tk-pipeline

 - kustomizeConfig:
 overlays:
 - application
 - cpu-node-selector
 parameters:
 - name: cpuType
 value: skylake
 repoRef:
 name: manifests
 path: tk/tk-pipeline-run
 name: tk-pipeline-run

DEMO

- A kubeflow deployment that created a GKE cluster with 2 nodes

- Run the same tensorflow model within a Profile but with different overlays

Pod limits selects the accelerator type (nvidia.com/gpu: ‘1’)
Pod affinity selects the cpu platform (cpu: cascadelake)

CPU Platform Accelerator Type Machine Type Image Type

Intel Skylake gpu nvidia-tesla-t4 n1-standard-8 cos

Intel Cascade Lake - c2-standard-8 ubuntu

Thank You

22

● Kubeflow website - https://www.kubeflow.org/
● Code - https://github.com/kubeflow/kubeflow

https://www.kubeflow.org/
https://github.com/kubeflow/kubeflow

