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Enabling the end user

Multi-tenant self-serve workspaces for developers and data scientists
Do not saddle the end user with k8s details

Deploy job to the right CPU/Accelerated hardware
Kustomize overlays for different cpu/accelerated hardware combinations
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Kubeflow: A platform for building ML products

O

Leverage containers and Kubernetes to solve the challenges of building ML products

o Reduce the time and effort to get models launched
Why Kubernetes
o  Kubernetes has won
o Kubernetes runs everywhere
o Enterprises can adopt shared infrastructure and patterns for ML and non ML services
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Knowledge transfer across the organization

Kubeflow is open
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No lockin

200 Members

20+ Organizations

Stats available @ http://devstats.kubeflow.org
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Kubeflow Cloud Providers

e Google Kubernetes Engine
e AWS
e Azure

Kubeflow Native K8

e Deployable to any k8 existing cluster
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ML Applications

e Goal: applications for every stage of ML
e Examples:
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Experimentation / Data Exploration
m  Jupyter / Notebook Spawner
Training
m Tensorflow & Pytorch distributed
training managed through K8s CRDs
m  Katib - HP Tuning
Workflows:
m Pipelines
Metadata
m Tracking and managing metadata of
ML workflows
Feature Store
m Feast (from GOJEK)
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Multi Tenancy for End Users

Users will operate on same k8s cluster
while each user has their own workspace

Istio Gateway A

Enforces Auth

hosting their services. Workspaces are
logically isolated: each user can only
access services to their own workspace.
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Training Training Training
Notebooks (TFJob, PyJob) Notebooks (TFJob, PyJob) Notebooks (TFJob, PyJob)
HP Tuning Serving HP Tuning Serving HP Tuning Serving
Pipelines Metadata Pipelines Metadata Pipelines Metadata
Namespace Namespace Namespace
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K8s Multi-Tenancy Challenges

Define clear user workspace boundary for access isolation
K8s in-cluster network is transparent
o  Services are by default visible from all pods
o  Need to establish network access control
e Access control around traffic through shared ingress
o  Users might access services in their own workspaces through same ingress.
o Need to establish access control behind ingress: user can only access workspace after permission
check
Workspace access sharing & revoke
o Each workspace owner should be able to share/revoke workspace access
o  Access sharing should not leak owner privilege while allow invited user operating on CRs
All policies, roles and bindings involved should behave in consistency.
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Kubeflow Multi-Tenancy (Profiles)

O

Define user workspace as namespace and build access control around it
o Manage user access to namespace through k8s rbac policy.
Leverage lIstio to control in-cluster traffic
o By default requests to user workspaces are denied unless allowed by Istio Rbac
Leverage ldentity-Aware Proxy and Istio to control traffic through ingress
o ldentity user request through ldentity-Aware Proxy.
o Istio then do rbac check on request target workspace and identity
Enable workspace access sharing & revoke
o  Workspace owners can share/revoke workspace access with other users through kubeflow Ul
o Invited users will have k8s edit permission plus permission to operate kubeflow CRs
Self-serve
o  New user can self-register to create and own their workspace through kubeflow Ul
Kubeflow Profile CR to control all policies, roles and bindings involved and guarantee consistency.
o  Offer plugin interface to manage external resource/policy outside k8s, eg. access control of public
cloud APIs



Kubeflow Access Control

e User access through kubectl: controlled by
k8s rbac policy.

e User access through browser: controlled by
istio rbac policy.

e Kubeflow multi-tenancy is implemented
k8s-native way, new services can be
integrated easily.
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Kubeflow Profile

Created by the user via cli: kubectl apply -f myprofile.yaml or kubeflow Ul

apiVersion: kubeflow.org/v1alpha
kind: Profile
metadata:
name: $(name)
spec:
owner: $(owner)

Data scientists use Profiles to create various types of workspaces,
where they can run training, inference, etc.
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ff.‘ Kubeflow

Create Kubeflow Profile ~_

yaml
apiVersion: kubeflow.org/vibeta1 Namespace
kind: Profile A . llecti a -
namespace is a collection of Kubeflow services. Resources created within a
metadata: namespace are isolated to that namespace. By default, a namespace will be created
name: demo-namespace # profile name is also namespace name for you.
spec:
owner: Namespace Name
kind: User |— demo-namespace
name: useri@email.com # replace with the email of the user
plugins:
- kind: Workloadldentity
spec:

gcpServiceAccount: useri-gcp@project-id.iam.gserviceaccount.com
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Share Kubeflow Profile with other users

1’;0‘ Kubeflow @ AllNamespaces ¥
A

Manage Contributors

O
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<— owner

Account info (Cluster Admin)

abhishek@google.com

Namespace memberships

Namespaces Your role contributor

kubeflow-abhishek Owner

Contributors to your namespace - kubeflow-abhishek

Email Addresses
( kunming@google.com X | add by email address

Cluster namespaces

Namespace Owner Contributors
demo=-namespace kunming@google.com
kubeflow-abhishek abhishek@google.com kunming@google.com



Kubeflow Device Overlays (accelerators, cpus)

e Device Overlays into Profiles, Pods
e Uses Profile extensions, Tekton Pipelines
e Can also be applied to Argo workflows and other pipeline engines
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Kubeflow Profile adds cpu/accelerator quotas

Has a quotas section that is added to the namespace

apiVersion: kubeflow.org/v1alpha
kind: Profile
metadata:
name: $(name)
spec:

Z‘L’j":g: $(owner) This could be added by an admission-controller or

hard: — gitops
requestsCpu: $(requestsCpu)
requestsMemory: $(requestsMemory)
requestsGpu: $(requestsGpu)
limitsCpu: $(limitsCpu)
limitsMemory: $(limitsMemory)
<vendor/device>: <value>
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Tekton Pipeline to run a model

kfctl can deploy manifest files from different repos or on disk

tk/tk-pipeline-run/overlays/cpu-node-selector

—— kustomizationyaml
—— params.env

—— params.yaml

— pipeline-run.yaml
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Tekton Pipeline to run a model
Adds a podTemplate.nodeSelector.cpu value

tk/tk-pipeline-run/overlays/cpu-node-selector/pipeline-run.yaml

apiVersion: tekton.dev/v1alpha1
kind: PipelineRun
metadata:

name: $(generateName)
spec:

podTemplate:

nodeSelector:
cpu: "$(cpuType)"
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Tekton Pipeline to run a model

kfctl can deploy manifest files from different repos or on disk

tk/tk-pipeline/overlays/run-model-task

—— config-map.yaml
—— kustomizationyaml
—— params.env

—— params.yaml

—— pipeline_patch.yaml
—— task.yaml

tk/tk-pipeline/overlays/run-model-task-nvidia
kustomization.yaml
—— params.env

—— params.yaml

— task patch.yaml
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Tekton Pipeline to run a model
run-model example

tk/tk-pipeline-run/overlays/run-model-task/task.yaml

apiVersion: tekton.dev/v1alpha1
kind: Task
metadata:
name: run-model
spec:
inputs:
params:
- name: imageName
type: string
steps:
- name: run-model
image: $(inputs.params.imageName)
command: ["/bin/bash", "/run-model/run-model.sh"]

%



Tekton Pipeline to run a model
task is patched to add gpu info

tk/tk-pipeline-run/overlays/run-model-task-nvidia/task_patch.yaml

- op: add
path: /spec/steps/O/resources
value:
limits:
nvidia.com/gpu: $(accelerator_count)
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Tekton Pipeline to run a model

config file to run a model on a node with cpu=skylake, nvidia.com/gpu

kfctl apply -f kfdef/run-model-gpu.yaml

- kustomizeConfig: - kustomizeConfig:

overlays: overlays:

- run-model-task - application

- run-model-task-nvidia - cpu-node-selector

parameters: parameters:

- name: accelerator_count - name: cpuType
value: 1 value: skylake

repoRef: repoRef:
name: manifests name: manifests
path: tk/tk-pipeline path: tk/tk-pipeline-run

name: tk-pipeline name: tk-pipeline-run
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DEMO

- Akubeflow deployment that created a GKE cluster with 2 nodes

CPU Platform Accelerator Type Machine Type Image Type
Intel Skylake gpu nvidia-tesla-t4 n1-standard-8 cos
Intel Cascade Lake - c2-standard-8 ubuntu

- Run the same tensorflow model within a Profile but with different overlays

Pod limits selects the accelerator type (nvidia.com/gpu: ‘1’)
Pod affinity selects the cpu platform (cpu: cascadelake)
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Kubeflow

Thank You

e Kubeflow website - https://www.kubeflow.org/
e Code - https://github.com/kubeflow/kubeflow
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