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Who are we?

● Senior Manager, Product Management, Cloud Platforms @ Red Hat
● Based in Toronto, Canada
● Supporting the team responsible for “Kubernetes-native 

infrastructure” related efforts, incl. KubeVirt.
● Previously OpenStack, Red Hat Virtualization product management 

and technical writer roles...
● ...and once upon a time COBOL developer.



Chandrakanth Reddy Jakkidi
   

●  Senior Software Engineer   @   F5 Networks 

        Product Development , Ecosystems Group  

   ●  Supporting and Leading Containerization Efforts  

    https://github.com/F5Networks/k8s-bigip-ctlr (Container Ingress Services) 
https://github.com/F5Networks/terraform-provider-bigip 

●  Active User Contributor to Open Source Communities

    ( past - Openstack , Present - CNCF projects like k8s/kubevirt) 

●  Has around 14 years of experience in  

    Networking/Virtualization/Cloud Technologies

●  Previously worked with Cisco Systems , 

     Starent Networks , Emerson , NXP/Freescale ,Artesyn ….   
 

 

  

 

 
  

 

 

 
  

 

  
 

 



KubeVirt Introduction

● Goal:
○ Turn Kubernetes into a single orchestrator for containers and 

virtual machines.

● Started in 2016 at Red Hat

● Open sourced in January 2017:
○ https://github.com/kubevirt/kubevirt

● Accepted into CNCF Sandbox 2019

● Apache 2.0 License



KubeVirt Community

● CNCF Sandbox

● 1,600+ GitHub Stars

● 76 Code Contributors (Red Hat)
38 Code Contributors (non-Red Hat)

● 1,900+ Pull Requests

● 320+ GitHub Forks

● 20+ releases (close to stable release)

● Weekly Community Meeting
and #virtualization on slack
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Why KubeVirt?

● Growing velocity behind Kubernetes and surrounding ecosystem for new 
applications.

● Reality that users will be dealing with virtual machine workloads for many 
years to come.

● Focus on building transition paths for users with workloads that will either 
never be containerized:

○ Technical reasons (e.g. older operating system or kernel)

○ Business reasons (e.g. time to market, cost of conversion)

● ...or will be decomposed over a longer time horizon.



KubeVirt Use Cases

● ...to run Virtual Machines to support new development

○ Build new applications relying on existing VM-based applications and APIs.

○ Leverage Kubernetes-based developer flows while bringing in these VM-based 
dependencies.

● ...to run Virtual Machines to support applications that can’t lift and shift

○ Users with very old applications who are not in a position to change them significantly.

○ Vendors with appliances (customer kernels, custom kmods, optimized workflows to build 
appliances, …) they want to bring to the cloud-native ecosystem.



KubeVirt Use Cases

● ...to run Kubernetes (!)

○ KubeVirt as a Cluster API provider

■ Hard Multi-Tenancy

○ Community provided cloud-provider-kubevirt



KubeVirt Use Cases

● ...to run Virtual Network Functions (VNFs) and other virtual appliances

○ VNFs in the context of Kubernetes are of continued interest, in parallel to 
Cloud-Native Network Function exploration.

■ Kubernetes is an attractive target for VNFs.
● Compute features and management approach is appealing.
● But: VNFs are hard to containerize!



KubeVirt Features

● Comprehensive API to run Virtual Machines on Kubernetes

● Kubernetes-native approach to virtualization

○ Implemented using CustomResourceDefinitions

○ Integration with cluster level features:
■ Storage, network, services, etc.

○ Integration with node level features:
■ CPUManager, multi-network, huge pages, etc.

● Focus on ease of use and a kubernetes-native look, feel, and behavior.



Getting started

https://kubevirt.io



Technical 
Architecture



KubeVirt Technical Intro

● Virtualization Stack

● Ideal Environment

● Kubevirt Technical Intro 

● Kubevirt Architecture

● Kubevirt Components
● Short Demo
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How to run Containers and VMs side by side?

LINUX KERNEL

PHYSICAL MACHINE

KVM

CONTAINER
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CONTAINER

APP
QEMU

Resultant VMs are able to run side by side directly on the same Kubernetes nodes as application containers.



Ideal Environment with KubeVirt 



KubeVirt Components

● virt-api-server

● virt-Launcher

● virt-Controller

● virt-Handler

● libvirtd



Virt-api-server
● virt-api-server serves as the entry point  API  EXAMPLE

   to kubevirt for all virtualisation related flows 

   and takes care to update the virtualisation related

   custom resource definition (CRD)

 ● Dedicated API for virtualization 

 ○ CRDs now, working on User API Server

        for custom (sub) resource types

 ○ Allows to define a VM resources & actions

● Responsible for the defaulting and validation

   of the provided VMs. 



libvirtd
   

● is a toolkit to manage virtualization 
platforms

● is accessible from C, Python, Perl, Java 
and more

● is licensed under open source licenses
● supports KVM, QEMU, Xen, Virtuozzo, 

VMWare ESX, LXC, BHyve and more
● targets Linux, FreeBSD, Windows and 

OS-X 
● An instance of libvirtd is present in every 

VM pod
● virt-launcher uses libvirtd to manage the 

life-cycle of the VM process.

 

  

 
  

 

 
  

 

 

 
  

 

  

 

 



Virt-Launcher  Pod Virtualization 
● VM is inside a POD

● Launched by Virt-Launcher

● Uses Libvirt

○ KVM where available

○ Emulation where not

■ AWS, GCP

■ Nested VM

● Volume container

○ Unwrapping docker images to

   VM images

● Other containers

○ Sidecars as required

○ Infra container: liveness check



Virt-Launcher Pod Networking
 ●  Virt-Launcher creates a dnsmasq on a 
     link-local address

 

●  Transfers the IP to the VM
 
●  The Pod itself is without networking!! 
  

 

  

 

 



Virt-Controller 

 
 ●  Each Object has a corresponding controller

●  VirtualMachine controller delegates most to
     VirtualMachineInstance

 
●  Fairly comprehensive set of objects and 

     more being discussed 
    ○ VMGroups 

 

   

 

  

 
  

   

 
  

 
 

 

 

  

 

  

 

 



Virt-Handler
   

●  Is a Daemonset

●  Acts as a minion

●  Responsible for: 

○ Stop

○ Update 

○ Status

○ Restart

●  Communicates to Libvirt via socket 

    /var/run/kubevirt host mount      
 

  

 
  

 

 
  

 

 

 
  

 

  

 

 



Demo

● Basic virtual machine launch



Demo

● CentOS virtual machine with Networking



Booting Options

Ephemeral Disks

● Immutable VMIs
● Loose changes across reboots
● Container Image embed VM images 

under /disk directory

Persistent Disk

● Data Volume 
● Copy registry disk into a Data 

Volume

cat << END > Dockerfile
FROM scratch
ADD centos7.qcow2  /disk
END

docker build -t vmdisks/centos:latest .
docker push vmdisks/centos:latest



KubeVirt Networking



Multus CNI

● Multiple networking interfaces 
● Multus + other CNI plugins
● Multus: behaves as a broker and 

arbiter of other CNI plugins
● Other CNI plugins: as master 

plugin, is used to configure and 
manage the primary network 
interface (eth0)



What Next?



Future Plans
Highlights (not an exhaustive list!):

● Better support for deterministic workloads:
○ CPU Pinning
○ NUMA Topology Alignment
○ IO Thread pinning

● Storage-assisted snapshot and cloning.
● Forensic virtual machine capture
● GPU passthrough
● Policy-based live migration and additional migration modes.
● Hotplugging of CPUs, RAM, disks, and NICs (not necessarily in that 

order!).

Many of these features rely on enhancing Kubernetes itself!

Sooner

Later



Want to go deeper?

● KubeVirt Deep Dive: Virtualized GPU Workloads on KubeVirt

○ Wednesday 20th November - 10:55 AM - 11:30 AM

○ Room 1AB - San Diego Convention Center

○ https://sched.co/VnjX



References 

● https://kubevirt.io

● https://github.com/intel/multus-cni

● https://www.cncf.io/wp-content/uploads/2019/09/KubeVirt-CNCF-Webinar




