

Stephen Gordon - @xsgordon

Chandrakanth Jakkidi

KubeVirt Intro:
Virtual Machine Management on Kubernetes

Who are we?

● Senior Manager, Product Management, Cloud Platforms @ Red Hat
● Based in Toronto, Canada
● Supporting the team responsible for “Kubernetes-native

infrastructure” related efforts, incl. KubeVirt.
● Previously OpenStack, Red Hat Virtualization product management

and technical writer roles...
● ...and once upon a time COBOL developer.

Chandrakanth Reddy Jakkidi

● Senior Software Engineer @ F5 Networks

 Product Development , Ecosystems Group

 ● Supporting and Leading Containerization Efforts

 https://github.com/F5Networks/k8s-bigip-ctlr (Container Ingress Services)
https://github.com/F5Networks/terraform-provider-bigip

● Active User Contributor to Open Source Communities

 (past - Openstack , Present - CNCF projects like k8s/kubevirt)

● Has around 14 years of experience in

 Networking/Virtualization/Cloud Technologies

● Previously worked with Cisco Systems ,

 Starent Networks , Emerson , NXP/Freescale ,Artesyn ….

KubeVirt Introduction

● Goal:
○ Turn Kubernetes into a single orchestrator for containers and

virtual machines.

● Started in 2016 at Red Hat

● Open sourced in January 2017:
○ https://github.com/kubevirt/kubevirt

● Accepted into CNCF Sandbox 2019

● Apache 2.0 License

KubeVirt Community

● CNCF Sandbox

● 1,600+ GitHub Stars

● 76 Code Contributors (Red Hat)
38 Code Contributors (non-Red Hat)

● 1,900+ Pull Requests

● 320+ GitHub Forks

● 20+ releases (close to stable release)

● Weekly Community Meeting
and #virtualization on slack

●

✓

✓

✓ ✓

✓

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓ ✓

…

Why KubeVirt?

● Growing velocity behind Kubernetes and surrounding ecosystem for new
applications.

● Reality that users will be dealing with virtual machine workloads for many
years to come.

● Focus on building transition paths for users with workloads that will either
never be containerized:

○ Technical reasons (e.g. older operating system or kernel)

○ Business reasons (e.g. time to market, cost of conversion)

● ...or will be decomposed over a longer time horizon.

KubeVirt Use Cases

● ...to run Virtual Machines to support new development

○ Build new applications relying on existing VM-based applications and APIs.

○ Leverage Kubernetes-based developer flows while bringing in these VM-based
dependencies.

● ...to run Virtual Machines to support applications that can’t lift and shift

○ Users with very old applications who are not in a position to change them significantly.

○ Vendors with appliances (customer kernels, custom kmods, optimized workflows to build
appliances, …) they want to bring to the cloud-native ecosystem.

KubeVirt Use Cases

● ...to run Kubernetes (!)

○ KubeVirt as a Cluster API provider

■ Hard Multi-Tenancy

○ Community provided cloud-provider-kubevirt

KubeVirt Use Cases

● ...to run Virtual Network Functions (VNFs) and other virtual appliances

○ VNFs in the context of Kubernetes are of continued interest, in parallel to
Cloud-Native Network Function exploration.

■ Kubernetes is an attractive target for VNFs.
● Compute features and management approach is appealing.
● But: VNFs are hard to containerize!

KubeVirt Features

● Comprehensive API to run Virtual Machines on Kubernetes

● Kubernetes-native approach to virtualization

○ Implemented using CustomResourceDefinitions

○ Integration with cluster level features:
■ Storage, network, services, etc.

○ Integration with node level features:
■ CPUManager, multi-network, huge pages, etc.

● Focus on ease of use and a kubernetes-native look, feel, and behavior.

Getting started

https://kubevirt.io

Technical
Architecture

KubeVirt Technical Intro

● Virtualization Stack

● Ideal Environment

● Kubevirt Technical Intro

● Kubevirt Architecture

● Kubevirt Components
● Short Demo

LINUX KERNEL

PHYSICAL MACHINE

KVM

VIRTUAL MACHINE

QEMU QEMU

VIRTUAL MACHINE

Linux virtualization stack

How to run Containers and VMs side by side?

LINUX KERNEL

PHYSICAL MACHINE

KVM

CONTAINER

VIRTUAL MACHINE

CONTAINER

APP
QEMU

Resultant VMs are able to run side by side directly on the same Kubernetes nodes as application containers.

Ideal Environment with KubeVirt

KubeVirt Components

● virt-api-server

● virt-Launcher

● virt-Controller

● virt-Handler

● libvirtd

Virt-api-server
● virt-api-server serves as the entry point API EXAMPLE

 to kubevirt for all virtualisation related flows

 and takes care to update the virtualisation related

 custom resource definition (CRD)

 ● Dedicated API for virtualization

 ○ CRDs now, working on User API Server

 for custom (sub) resource types

 ○ Allows to define a VM resources & actions

● Responsible for the defaulting and validation

 of the provided VMs.

libvirtd

● is a toolkit to manage virtualization
platforms

● is accessible from C, Python, Perl, Java
and more

● is licensed under open source licenses
● supports KVM, QEMU, Xen, Virtuozzo,

VMWare ESX, LXC, BHyve and more
● targets Linux, FreeBSD, Windows and

OS-X
● An instance of libvirtd is present in every

VM pod
● virt-launcher uses libvirtd to manage the

life-cycle of the VM process.

Virt-Launcher Pod Virtualization
● VM is inside a POD

● Launched by Virt-Launcher

● Uses Libvirt

○ KVM where available

○ Emulation where not

■ AWS, GCP

■ Nested VM

● Volume container

○ Unwrapping docker images to

 VM images

● Other containers

○ Sidecars as required

○ Infra container: liveness check

Virt-Launcher Pod Networking
 ● Virt-Launcher creates a dnsmasq on a
 link-local address

● Transfers the IP to the VM

● The Pod itself is without networking!!

Virt-Controller

 ● Each Object has a corresponding controller

● VirtualMachine controller delegates most to
 VirtualMachineInstance

● Fairly comprehensive set of objects and

 more being discussed
 ○ VMGroups

Virt-Handler

● Is a Daemonset

● Acts as a minion

● Responsible for:

○ Stop

○ Update

○ Status

○ Restart

● Communicates to Libvirt via socket

 /var/run/kubevirt host mount

Demo

● Basic virtual machine launch

Demo

● CentOS virtual machine with Networking

Booting Options

Ephemeral Disks

● Immutable VMIs
● Loose changes across reboots
● Container Image embed VM images

under /disk directory

Persistent Disk

● Data Volume
● Copy registry disk into a Data

Volume

cat << END > Dockerfile
FROM scratch
ADD centos7.qcow2 /disk
END

docker build -t vmdisks/centos:latest .
docker push vmdisks/centos:latest

KubeVirt Networking

Multus CNI

● Multiple networking interfaces
● Multus + other CNI plugins
● Multus: behaves as a broker and

arbiter of other CNI plugins
● Other CNI plugins: as master

plugin, is used to configure and
manage the primary network
interface (eth0)

What Next?

Future Plans
Highlights (not an exhaustive list!):

● Better support for deterministic workloads:
○ CPU Pinning
○ NUMA Topology Alignment
○ IO Thread pinning

● Storage-assisted snapshot and cloning.
● Forensic virtual machine capture
● GPU passthrough
● Policy-based live migration and additional migration modes.
● Hotplugging of CPUs, RAM, disks, and NICs (not necessarily in that

order!).

Many of these features rely on enhancing Kubernetes itself!

Sooner

Later

Want to go deeper?

● KubeVirt Deep Dive: Virtualized GPU Workloads on KubeVirt

○ Wednesday 20th November - 10:55 AM - 11:30 AM

○ Room 1AB - San Diego Convention Center

○ https://sched.co/VnjX

References

● https://kubevirt.io

● https://github.com/intel/multus-cni

● https://www.cncf.io/wp-content/uploads/2019/09/KubeVirt-CNCF-Webinar

