
Nuclio : KubeFlow
Serverless’s component
Orit Nissan-Messing, VP R&D, Iguazio

Data Science Teams Don’t Do Data Science

Effort Allocation

Expectation

Defining KPIs

Collecting Data

Infrastructure & DevOps

Optimizing ML Algorithm

Integration
Reality

Source: Google Developers Launchpad

The need: Simpler Solutions, Better Data Integration

80% Overhead

1

Automate DevOps to Deploy Projects in
One Week as Opposed to Months!

Develop/Experiment Package Scale-out Tune Instrument Automate

Weeks with one
data scientist

Months with a large team of developers,
scientists, data engineers and DevOps

2

• Dependencies
• Parameters
• Run scripts
• Build

• Load-balance
• Data partitions
• Model distribution
• Hyper params

• Parallelism
• GPU support
• Query tuning
• Caching

• Monitoring
• Logging
• Versioning
• Security

• CI/CD
• Workflows
• Rolling upgrades
• A/B testing

Example: Real-time Product Recommendations

Product, Store,
Customer Tables

Base
Features

Transactions,
Location Updates

Environment
(e.g. weather)

Derived
Features

User ID

Top K
Products

Model

Logs/telemetry

Learned
Features

ETL

Stream

Scrape

Data Prep

API

Model Serving

TensorFlow
Embedding

XGBoost
Buying

Probability

INGEST PREPARE TRAIN SERVE

ML Function Feature/Model Store3

Nuclio: Taking Serverless to Data Intensive Apps

5

• Non-blocking, parallel
• Zero copy, buffer reuse
• Up to 400K events/sec/proc
• GPU optimizations

Function
Workers

Event
Listeners

Extreme Performance

Shard	1 Workers

Workers
Shard	2

Shard	3

Shard	4 Workers

Advanced Data & AI Features

DB, MQ,
File

Functions

• Auto-rebalance, checkpoints
• Any source: Kafka, NATS,

Kinesis, event-hub, iguazio,
pub/sub, RabbitMQ, Cron, ..

• NVIDIA Rapids integration

• Data bindings
• Shared volumes
• Context cache

Statefulness

nuclio processor

Natively integrated with Kubeflow and Jupyter Notebooks

Ingest: Using Nuclio to Accelerate ETL and Streaming

Simple code! Automated DevOps ! Any Source!
(e.g. read JSON Stream + aggregate + dump to Parquet)

18 MB/s

500 MB/s

Simple
Python

4

Serving: Using Nuclio for Real-time Model Serving

Transactions
per Second

200

400

600

800 Single command from
notebook to function

4 Machines
CPU + GPU
+ Serverless

8 Machines
CPU + GPU +
Serverless

8 Machines
CPU + GPU

FASTER WITH
ONLY 4

MACHINES!

5

4X Faster model serving on GPU system

Why Not Use Serverless for Training and Data Prep?

Serverless Today Data Prep and Training

Task lifespan Millisecs to mins Secs to hours

Scaling Load-balancer Partition, shuffle, reduce,
Hyper-params, ring allreduce

State Stateless Stateful

Input Event Params, Datasets

Serverless: resource elasticity and automated deployment and operations
6

What about Training and data prep ?

Introducing Nuclio ML Functions

Application & Notebook Templates

Builder Controller Runs & Artifacts DB

Real-time Analytics ServingTraining
+ KFS

Access from your notebook, IDE, or KubeFlow

Multiple
Engines

Common
APIs &

Automation
Built-in Artifacts &

Runs Tracking

Elastic Scaling

Fast Persistent Data Layer (Files, DataFrames, K/V)

7

Demo: Fast and Serverless KubeFlow Pipeline

9

All	demos	can	be	found	in	github:	https://github.com/mlrun/demos

Thank You
oritn@iguazio.com, www.iguazio.com

Iris Model Nuclio Function

Iris Model Pipeline

Iris Model Serving

Distributed TenserFlow Pipeline

MLRun UI - Distributed TenserFlow Train Job

