

Ariel Shuper,

VP Product, Portshift

Knative: The Security Platypus

Who Am I?

VP Product Management @Portshift : Identity based

runtime protection powered by Istio/service-mesh

architecture

Prior to Portshift, Sr. Director, Head of Serverless Security

@Aqua Security (responsible for Aqua Security serverless

offering, working on AWS Lambda, Azure Functions and

Google Functions). Head of Public-Cloud security products

@Check Point

Why we’re here?

Build
Source to Container

Serving
Request-driven, scaling up/down,

container-based compute

Eventing
Attach work to event

sources

K-native: Quick Recap

Knative extends Kubernetes to provide a set of middleware components to build modern container-

based applications…

Knative offers Kubernetes-native APIs for deploying serverless-style functions, applications, and

containers to an auto-scaling runtime

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

Knative Serving

Stateless, HTTP request-driven,

container autoscaling platform

on top of Kubernetes and Istio

Knative Internals

Knative Eventing

HTTP based events triggering system for

loosely coupled services on top of Kubernetes

and Istio

K-native: Security angle (a.k.a Why a Platypus?)

• Security aspects aren’t addresses independently in

Knative

• But Knative uses Kubernetes and Istio:

• Kubernetes security tools (RBAC, network policies, secrets etc,)

• Istio adds on additional tools (traffic encryption, services

authentication/authorization)

Serverless Security Landscape

• When Serverless (FaaS) was born it was perceived as

the most secured cloud service:

• Ephemeral (5-10min. max)

• No write access to the host filesystem

• No fixed network address

• but, serverless architecture has few security pitfalls

• Application code

• The Cloud infrastructure

• Security became a challenge: existing security tools

were inadequate

Serverless Security Landscape

There are few serverless security frameworks

Notables ones:

• OWASP top-10 (Serverless interpretations)

• CSA top 12 critical risks

Serverless Security Landscape
CSA Top 12 Risks for Serverless Apps

SAS-1 : Function Event-Data Injection

SAS-2 : Broken Authentication

SAS-3 : Insecure Serverless Deployment Configuration

SAS-4 : Over-Privileged Function Permissions and Roles

SAS-5 : Inadequate Function Monitoring and Logging

SAS-6 : Insecure Third-Party Dependencies

SAS-7 : Insecure Application Secrets Storage

SAS-8 : Denial of Service and Financial Resource Exhaustion

SAS-9 : Serverless Business Logic Manipulation

SAS-10 : Improper Exception Handling and Verbose Error Messages

SAS-11: Legacy / Unused functions & cloud resources

SAS-12: Cross-Execution Data Persistency

A1 Code Injection

A2 Broken Authentication

A3 Sensitive Data Exposure

A4: XML External Entities (XXE)

A5: Broken Access Control

A6: Security Misconfiguration

A7: Cross-Site Scripting (XSS)

A8: Insecure Deserialization

A9: Using Components with Known Vulnerabilities

A10: Insufficient Logging and Monitoring

Serverless Security Landscape (2)

You can classify the “Serverless” risks arena into 2 classes

Serverless Security Landscape (3)

Your App Code Your Serverless Infra

Code Injection

Vulnerable code

Sensitive Data exposure (secrets)

Cross-Site-Scripting (XSS)

Exception handling messages

Broken Authentication

Insecure Deployment configuration

Over privileged permissions

Inadequate Monitoring & Logging

Denial of Service/ Resources

Exhaustion

Demo is based on the OWASP Serverless_Goat vulnerable App

Code is available at: https://github.com/OWASP/Serverless-Goat

Demo: Serverless Attack

https://github.com/OWASP/Serverless-Goat/blob/master/LESSONS.md

Knative: The Security Angle

Let’s examine Knative’s Security angle

Assumptions:

A. Kubernetes uses its security

controls (Secrets, Network Policies,

RBAC)

B. Istio is configured by Knative

Knative Security: Code Flaws

Code Injection -> remains a risk (but to a lower extent)

Vulnerable code ->Lower risk (vulnerable packages/dependencies inspection is in large usage defacto)

Sensitive Data exposure (secrets) -> Kubernetes secrets minimize its impact

Cross-Site-Scripting (XSS) -> can be more relevant and effective attack

Exception handling messages -> Less relevant

Knative Security: Serverless Infra

Broken Authentication -> can be solved by Istio mtls authentication

Insecure Deployment configuration -> Can be a real challenge

Over privileged permissions -> lower risk, can be easily solved

Inadequate Monitoring & Logging -> lots of monitoring & logging

options

Denial of Service/ Resources Exhaustion - Can be a real issue

What About Knative Architecture?

• Is Knative architecture secured?

• Can Istio simplify the security challenges of

Knative (hint: w/o cold start impact) ?

Knative Architecture: More worries

Knative Architecture adds few security challenges

• Eventing:

• Knative’s eventing does not perform or configure additional security controls beyond the

underlying Kubernetes cluster (Unauthorized events subscription, false events

injection)

• Cloud events are loosely coupled using different platforms (VMs, Containers, SaaS,

FaaS) making the authentication/authorization even more challenging

Knative Security: Istio to the rescure?

• Istio can mitigate lots of the Knative security challenges

• Using granular Identities the authentication/authorization challenges in Eventing can be solved

• Traffic controls options can mitigate the DoS/Service Exhaustion

• Validation of deployments configuation

But: Istio has performance considerations: first invocations (cold-calls initializations) takes long times…

Summary

• Knative is the Kuberntes Serverless platform

• Knative Security is like a Platypus:

• Lots of the classical serverless risks are solved

• Some risks are relevant and some risks are unique

• Istio can mitigate most of the challenges

• But it has performance impact (cold calls)

ariel@Portshift.io

@ArielShuper

Visit us at booth CE30 Startup pavilion

Thank You!

mailto:ariel@Portshift.io

