
Levente Kálé, Gergely Csatári

Is There a Place for Performance 
Sensitive Workloads in Kubernetes?



whoarewe

Gergely Csatári

Nokia
Open Source Specialist

: gergely-csatári-76591020/

: @CsatariGergely

Levente Kálé

Nokia
TelCo edge cloud architect

: levovar-045/

: @Levovar

https://www.linkedin.com/in/gergely-csatári-76591020/
https://github.com/CsatariGergely
https://www.linkedin.com/in/levovar-045/
https://github.com/Levovar


What do we do?

Surprise: Kubernetes-based TelCo
grade clouds and containerized TelCo
applications ☺

Clouds
Private edge, central, and public clouds

Kubernetes-only or multi-orchestrator

Apps
5G Radio Access Network (DU, CU, RIC)

Mobile core
Fixed network

IT/Enterprise



CNCF TUG

CNF Testbed

CNTT

SIG-Node / WG-Resource Management

DANM

CPU-Pooler

Akraino

Open source entanglements



Is There a Place for Performance Sensitive Workloads in 
Kubernetes?

How does K8s perform when it is used 
to run the worst possible workloads?

Our worst possible is running compute 
heavy workloads:

Using all the available CPU of a Node 

without much idling

With high network throughput needs: 

25Gbps+

With real-time latency requirements: 

<1μs RTT

Facing challenging high-availability 

("five-nines") and legal (government 

laws) requirements



Is There a Place for Performance Sensitive Workloads in 
Kubernetes?

Y E S!!!

B U T...



Before deep-dive, some things You 
should also say no to:

Proprietary hardware

proprietary operating systems

special kernel patches (including 

preemptive RT kernel)

proprietary kernel drivers

privileged applications

With a few native enhancements even 
the worst applications can be kept 
cloud-native*!

"Solutions" out-of-scope and question

(*ish) ☺



Realtime Scorecard for K8s 1.16

CPU management

HW acceleration

Memory management

Network management

Topology awareness



CPU management baseline

Kubernetes has a CPU manager!

The Good:

Uses cpusets

Supports multiple policies: none, static

Possible to allocate exclusive CPU 

cores

The Bad:

No interworking with non-K8s 

managed processes

Only supports node-level separation

https://kubernetes.io/blog/2018/07/24/feature-highlight-cpu-manager/


Reservoir pools

CPU management – Need moar pools!

K8s Node

Infra VMs
RT

APP
The 80%

Near-RT

APP
Mr. Red, The Virtual Machine

Mr. Purple, The Exclusive

Mr. Orange, The Shared

Mr. Grey, The Default

Mr. Green, The Platfrom



CPU management – CPU-Pooler

Native extension to CPU Manager

Uses core resources API

Uses same kernel features 

Just supports more pools – and 

makes it possible to tune them 

differently

YET
https://github.com/nokia/CPU-Pooler

https://github.com/nokia/CPU-Pooler


CPU management – Pooler in action



CPU management enhanced

Support non-K8s managed pools by excluding cores from its own

CRI resource manager

Why not take the best of both worlds -> dynamic pooling!

Natively support sub-node pools like CPU-Pooler

But allocate cores to a pool dynamically, on-demand like CPU Manager

A „CPU Pool” would become an abstraction, describing a set of characteristics 

or configurations CPU Manager would apply when a workload is 

instantiated!

https://github.com/kubernetes/enhancements/pull/1319
https://kccncna19.sched.com/event/UabM


HW acceleration baseline

HW acceleration: delegate 

recurring and costly computing 

operations to specialized hardware

Examples: (SR-IOV,) FPGA, GPU

The Good:
Flexible and extensible (gRPC) 

Device Plugin API to plugin HW device 

managers

The Bad:
Absence of fine-grained control



HW acceleration devices

F(ield)P(rogrammable)G(ate)A(rray): better for single-

thread/serialized, high-volume, low-complexity computations
FEC computation in L1 of RAN 
(https://en.wikipedia.org/wiki/Forward_error_correction)

Offloading network, crypto(encryption/decryption), storage 
management etc.

GPU: better for multi-threaded computations
(Predictive) rendering: cloud gaming, AR/VR
High performance general purpose computing (CUDA/GPGPU): AI/ML, 

image recognition, neural networks, physical simulations, cryptocurrency

https://en.wikipedia.org/wiki/Forward_error_correction
https://en.wikipedia.org/wiki/CUDA


HW acceleration enhanced

„Release” DPAPI call

Passing parameters to Allocate() DPAPI call

Sharing the same physical device (e.g. queue of the same FPGA, 

GPU cores/lanes of the same card etc.)



Memory management baseline

The Good:
Native support for allocating 

normal memory

Supports huge memory pages

Supports different sizes (2M, 1Gi)

The Bad:
Need better isolation

Lack of topology awareness hurts 

performance



Memory management enhanced

Topology aware accounting of hugepages

Topology aware resource management of hugepages

Manage hugepages on the container level

Topology aware allocation of RAM

Isolating memory and hugepages from non-K8s managed workloads?

https://github.com/kubernetes/enhancements/pull/1245
https://github.com/kubernetes/kubernetes/issues/81009
https://github.com/kubernetes/enhancements/pull/1199


Network management baseline

"Network management" in vanilla 

Kubernetes == CNI

The Good:
Perfect for small, single tenant, IT 

apps

The Bad:
Perfect for small, single tenant, IT
apps

Cannot satisfy TelCo functional, 

standard, and legal requirements



Network management requirements in 
production



Network management eco-system

Industry consensus: K8s needs a centralized network manager in production

To quote NSM documentation: „An API should exist that allows the VNF* to specify 

its networking intent through an abstract API dynamically.”

Same problem description, different solutions:

DANM (presenter’s choice): hides –but implements- CNI, provides multi-tenant, 

user role specific network management APIs to operators and applications, 

implements common features in a backend-agnostic manner

Multus: directly exposes CNI to operators

Network Service Mesh: works independently from normal CNI, extra interfaces 

provisioned post-deployment, targeting specific use-cases

https://github.com/nokia/danm/
https://github.com/intel/multus-cni
https://github.com/networkservicemesh/networkservicemesh


Networking enhanced

API-driven, multi-tenant, multi-role network 

management integrated to bare-metal cloud 

underlay network fabric ("host-to-leaf")

Supports multiple, physically separated 

interfaces

Natively supports multiple, varying network 

provisioning backends with different 

characteristics

Centralized, API-driven features (e.g. 

K8s Services, IPAM, IP routes, VLAN, VxLAN

etc.) extended for all interfaces, agnostic of 

their type

https://github.com/nokia/danm

https://github.com/nokia/danm


Don't believe the hype

DANM User Guide

Akraino REC

Multiple networks for Kubernetes workloads

https://github.com/nokia/danm/blob/master/user-guide.md
https://www.lfedge.org/projects/akraino/release-1/telco-appliance-radio-edge-cloud/
https://kccncna19.sched.com/event/UabS/multiple-networks-for-kubernetes-workloads-piotr-skamruk-codilime-doug-smith-red-hat


Topology awareness baseline

There is now a Topology Manager in K8s!

The Good:

Aligns CPUs, and Devices

Multiple policies available from the get-go 

("strict" included)

The Bad:

Unnecessary restriction on alignment

Does not align hugepages

No topology aware scheduling

https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/


Topology awareness enhanced

Fortunately Topology Manager is a major community focus, so most of the 

shortcomings are already being addressed!

History and future

1.17 issue tracker

Notable and important enhancements:

Removing restriction of when alignment can happen (1.17)

Hugepage support (1.18)

Topology aware scheduling (under discussion)

https://kcsna2019.sched.com/event/Vv0W/present-and-future-of-hardware-topology-awareness-in-kubelet-connor-doyle
https://github.com/kubernetes/kubernetes/issues/83479
https://github.com/kubernetes/kubernetes/pull/83492


The final, definitive, never-to-be-changed 
K8s 1.16 realtime scorecard is...

CPU management

HW acceleration

Memory management

Network management

Topology awareness

Baseline With enhancements



References
• DANM: https://github.com/nokia/danm/
• CPU Pooler: https://github.com/nokia/CPU-Pooler
• CNTT: https://github.com/cntt-n/CNTT
• CNCF TUG: https://github.com/cncf/telecom-user-group
• REC: https://www.lfedge.org/projects/akraino/release-1/telco-appliance-

radio-edge-cloud/

https://github.com/nokia/danm/
https://github.com/nokia/CPU-Pooler
https://github.com/cntt-n/CNTT
https://github.com/cncf/telecom-user-group
https://www.lfedge.org/projects/akraino/release-1/telco-appliance-radio-edge-cloud/


Q&A


