

KubeCon

CloudNativeCon

North America 2019

Is There a Place for Performance Sensitive Workloads in Kubernetes?

Levente Kálé, Gergely Csatári

whoarewe

Levente Kálé

Nokia TelCo edge cloud architect

in : levovar-045/

Gergely Csatári

Nokia Open Source Specialist

What do we do?

Surprise: Kubernetes-based TelCo grade clouds and containerized TelCo applications ©

Clouds

Private edge, central, and public clouds Kubernetes-only or multi-orchestrator

Apps

5G Radio Access Network (DU, CU, RIC)

Mobile core Fixed network IT/Enterprise

Open source entanglements

CNF Testbed

CNTT

÷

SIG-Node / WG-Resource Management

DANM

CPU-Pooler

Is There a Place for Performance Sensitive Workloads in Kubernetes?

How does K8s perform when it is used to run the **worst possible** workloads?

Our worst possible is running compute heavy workloads:

- **Using** all the available CPU of a Node without much idling
- *With* high network throughput needs: 25Gbps+
- *With* real-time latency requirements: <1µs RTT
- *Facing* challenging high-availability ("five-nines") and legal (government laws) requirements

Is There a Place for Performance Sensitive Workloads in Kubernetes?

Y E S!!!

B U T...

"Solutions" out-of-scope and question

Before deep-dive, some things You should also say no to:

Proprietary hardware proprietary operating systems special kernel patches (including preemptive RT kernel) proprietary kernel drivers privileged applications

With a few native enhancements even the worst applications can be kept cloud-native*! (*ish) ©

00008E10:	85	UO	00	00	00	00	83	76	OE	FE	30	75	01	45	45	ÐF	ן …ט ו ּ.[חֹנָטּט.בּבּ.
00008E20:	B7	4C	óΕ	FE	8B	C1	83	CO	DØ	66	83	E8	ØA	72	14	83	•Lnţ<Á.ŔÐf.č.r
00008E30:	C 0	F9	66	83	E8	06	72	13	83	C 0	Еó	66	83	E8	06	72	Ŕůf.č.rŔćf.č.r
00008E40:	15	EB	71	ØF	B7	F9	83	EF	30	EB	14	ØF	B7	F9	83	EF	.ëqů.ď0ëů.ď
00008E50:	41	83	C7	ØA	EB	09	ØF	B7	F9	83	EF	61	83	C7	ØA	83	A.Ç.ë∙ů.ďa.Ç
00008E60:	7C	24	0C	00	75	09	83	70	24	08	00	72	47	EB	02	70	\$u \$rGë.
00008E70:	43	81	70	24	0C	FF	FF	FF	ØF	75	09	83	7C	24	08	FF	j C. \$.'''.u \$.'
00008E80:	76	04	EB	30	7F	2E	8B	C7 j	99	52	50	8B	44	24	10	8B	
00008E90:	54	24	14	ØF	A4	C2	04	C1 j	ΕØ	04	03	04	24	13	54	24	T\$×Â.Åŕ\$.T\$
00008EA0:	04	83	64	08	89	44	24	08 j	89	54	24	0C	45	33	DB	E9	Ä.%D\$.%T\$.E3Űé
00008EB0:	6B	FF	FF	FF	80	7C	24	10	00	ØF	84	D 0	00	00	00	8B	k```∎ \$"Ð<
00008EC0:	44	24	08	8B	54	24	0C	F7	D8	83	D2	00	F7	DA	89	44	ĺ D\$. <t\$.÷ř.ň.÷ú‰d< td=""></t\$.÷ř.ň.÷ú‰d<>
00008ED0:	24	08	89	54	24	0C	E9	B4	00	00	00	ØF	B7	44	óΕ	FE	\$.‰T\$.é′∙Dnţ
00008EE0:	83	C 0	D 0	66	83	E8	ØA	73	5F	ØF	B7	7C	óΕ	FE	83	EF	Í .ŔÐf.č.s∙ nţ.ď
00008EF0:	30	83	70	24	0C	00	75	09	83	7C	24	08	00	72	49	EB	0. \$u \$rIë
00008F00:	02	70	45	81	7C	24	0C	CC	CC	CC	0C	75	0C	81	7C	24	. Ė. \$.ĔĔĔ.u \$
00008F10:	08	CC	CC	CC	CC	76	04	EB	2F	7F	2D	6A	00	6A	ØA	8B	ĺ .ĚĚĚĚv.ë/∎-j.j.<
00008F20:	44	24	10	8B	54	24	14	E8	DØ	FD	FF	FF	52	50	8B	C7	Ì D\$. <t\$.čðý'`rp<ç< td=""></t\$.čðý'`rp<ç<>
00008F30:	99	03	04	24	13	54	24	04	83	C4	08	89	44	24	08	89	™\$.T\$Ä.%D\$.%
00008F40:	54	24	0C	45	33	DB	EB	93	80	7C	24	10	00	74	17	8B	T\$.E3Űë"∎ \$t.<
00008F50:	44	24	08	8B	54	24	0C	F7	D8	83	D2	00	F7	DA	89	44	D\$. <t\$.÷ř.ň.÷ú‰d< td=""></t\$.÷ř.ň.÷ú‰d<>
00008F60:	24	08	89	54	24	0C	83	70	24	0C	00	75	05	83	7C	24	\$.%T\$ \$u \$
00008F70:	08	00	74	1B	83	7C	24	0C	00	75	ØA	83	7C	24	08	00	t \$u \$
00008F80:	ØF	92	C 0	EB	03	ØF	9C	CØ	3A	44	24	10	74	01	4D	66	.'ŔëśŔ:D\$.t.Mf
00008F90:	83	7C	óΕ	FE	00	ØF	95	CO	ØA	D8	74	09	45	4D	8B	04	. nţ+Ŕ.Řt.EM<.
00008FA0:	24	89	28	EB	07	8B	04	24	33	D2	89	10	8B	44	24	08	\$‰(ë.⊴.\$3҉. <d\$.< td=""></d\$.<>
00008FB0:	8B	54	24	OC	83	C4	14	5D	5F	5E	5B	C3	88	14	CD	FC	<t\$ä.]_^[ăĺü< td=""></t\$ä.]_^[ăĺü<>
00008FC0:	FB	4A	00	89	04	CD	F8	FB	4A	00	C3	90	53	56	57	55	űJ.‰.ÍřűJ.Å.SVWU
00008FD0:	51	8B	D8	C6	04	24	01	85	DB	74	7F	3B	1D	F8	FB	4A	Q<ŘĆ.\$Út∎;.řűJ
00008FE0:	00	75	0C	ØF	B6	05	FC	FB	4A	00	88	04	24	EB	óΕ	ØF	.u¶.üűJ\$ëo.
00008FF0:	Bó	03	2C	ØD	74	06	FE	C8	74	ØF	EB	5E	ØF	Bó	43	01	¶.,.t.ţČţ.ë^.¶Ç.
00009000:	03	C3	8B	40	ØA	8B	18	EB	D2	ØF	B6	73	01	03	F3	83	.Ā<@.<.ëŇ.¶só.
00009010:	7E	06	00	76	45	8B	бE	06	4D	85	ED	7C	3D	45	33	FF	~vE <n.m…í =e3'< td=""></n.m…í =e3'<>
00009020:	83	7C	FE	ØA	00	74	37	8B	44	FE	ØA	8B	18	80	3B	ØD	. ţt7 <dţ.<.∎;.< td=""></dţ.<.∎;.<>
00009030:	75	14	ØF	B6	43	01	03	C3	8B	40	ØA	8B	00	E8	8A	FF	u¶CĂ<@.<_čŠ'
00009040:	FF	FF	84	C 0	75	18	80	3B	ØE	75	ØB	8B	C3	E8	7A	FF	'"Ŕu.∎;.u.≺Ăčz'
00009050:	FF	FF	84	C 0	75	08	47	4D	75	C6	C6	04	24	00	ØF	B6	, fu.GMuĆĆ.\$¶
00009060:	04	24	5A	5D	5F	5E	5B	C3	53	56	8B	F 0	E8	2B	33	00	.\$Z]_^[ĀSV<đč+3.
00009070:	00	3B	BØ	08	00	00	00	751	ØE	E8	1E	33	00	00	ØF	B6	.:°u.č.3¶

00 00 00 11 00 70115

Realtime Scorecard for K8s 1.16

CPU management

CubeCon

North America 2019

HW acceleration

Memory management

Network management

Topology awareness

CPU management baseline

Kubernetes has a <u>CPU manager</u>!

The Good:

Uses cpusets

Supports multiple policies: none, static Possible to allocate exclusive CPU cores

The Bad:

No interworking with non-K8s managed processes Only supports node-level separation

CPU management – Need moar pools!

Reservoir pools

Mr. Green, The Platfrom

Mr. Red, The Virtual Machine

Mr. Purple, The Exclusive

Mr. Orange, The Shared

Mr. Grey, The Default

CPU management – CPU-Pooler

NO LOGO YET

https://github.com/nokia/CPU-Pooler

Native extension to CPU Manager Uses core resources API

Uses same kernel features

Just supports more pools – and makes it possible to tune them differently

CPU management – Pooler in action

North America 2019

poolconfig-compute-1.yaml:

nodeSelector:						
nodename: caas_worker1						
pools:						
default:						
cpus: 1,13-14,29,41-42						
exclusive_caas:						
cpus: 9-12,24-27,37-40,52-55						
shared_caas:						
cpus: 2-8,15-23,30-36,43-51						

[cloudadmin@controller-1 ~]\$ kubectl exec cpu-pooling-demo-769fb5fb44-vftqx -c default-test cat /proc/1/status | grep Cpus_allowed_list Cpus_allowed_list: 1,13-14,29,41-42

[cloudadmin@controller-1 ~]\$ kubectl exec cpu-pooling-demo-769fb5fb44-vftqx -c exclusive-test cat /proc/1/status | grep Cpus_allowed_list Cpus_allowed_list: 10

[cloudadmin@controller-1 ~]\$ kubectl exec cpu-pooling-demo-769fb5fb44-vftqx -c shared-test cat /proc/1/status | grep Cpus_allowed_list Cpus allowed list: 2-8,15-23,30-36,43-51

CPU management enhanced

Support non-K8s managed pools by excluding cores from its own

CRI resource manager

Why not take the best of both worlds -> *dynamic pooling!* Natively support sub-node pools like CPU-Pooler But allocate cores to a pool dynamically, on-demand like CPU Manager

A "CPU Pool" would become an abstraction, describing a set of characteristics or configurations CPU Manager would apply *when a workload is instantiated!*

HW acceleration baseline

HW acceleration: delegate recurring and costly computing operations to specialized hardware Examples: (SR-IOV,) FPGA, GPU

The Good:

Flexible and extensible (gRPC) Device Plugin API to plugin HW device managers

The Bad:

Absence of fine-grained control

F(ield)P(rogrammable)G(ate)A(rray): better for singlethread/serialized, high-volume, low-complexity computations FEC computation in L1 of RAN (<u>https://en.wikipedia.org/wiki/Forward_error_correction</u>) Offloading network, crypto(encryption/decryption), storage management etc.

GPU: better for multi-threaded computations (Predictive) rendering: cloud gaming, AR/VR High performance general purpose computing (<u>CUDA/GPGPU</u>): AI/ML, image recognition, neural networks, physical simulations, cryptocurrency

HW acceleration enhanced

"Release" DPAPI call

Passing parameters to Allocate() DPAPI call

Sharing the same physical device (e.g. queue of the same FPGA, GPU cores/lanes of the same card etc.)

Memory management baseline

The Good:

Native support for allocating normal memory Supports huge memory pages Supports different sizes (2M, 1Gi)

The Bad:

Need better isolation Lack of topology awareness hurts performance

Memory management enhanced

Topology aware accounting of hugepages

Topology aware resource management of hugepages

Manage hugepages on the container level

Topology aware allocation of RAM

Isolating memory and hugepages from non-K8s managed workloads?

Network management baseline

"Network management" in vanilla Kubernetes == CNI

The Good:

Perfect for small, single tenant, IT apps

The Bad:

Perfect for *small*, *single* tenant, *IT* apps

Cannot satisfy TelCo functional, standard, and legal requirements

Network management requirements in production

KubeCon

CloudNativeCon

North America 2019

Industry consensus: K8s needs a centralized network manager in production To quote NSM documentation: "An API should exist that allows the **VNF*** to specify its networking intent through an abstract API dynamically."

Same problem description, different solutions:

DANM (presenter's choice): hides –but implements- CNI, provides multi-tenant, **user role specific** network management APIs to **operators** and **applications**, implements common features in a backend-agnostic manner

MULTUS Multus: directly exposes CNI to operators

Network Service Mesh: works independently from normal CNI, extra interfaces provisioned post-deployment, targeting specific use-cases

Networking enhanced

API-driven, multi-tenant, multi-role network management integrated to bare-metal cloud underlay network fabric ("host-to-leaf")

Supports multiple, physically separated interfaces

Natively supports multiple, varying network provisioning backends with different characteristics

Centralized, API-driven features (e.g. K8s Services, IPAM, IP routes, VLAN, VxLAN etc.) extended for all interfaces, agnostic of their type

DANM User Guide

Akraino REC

Multiple networks for Kubernetes workloads

Topology awareness baseline

There is now a **Topology Manager** in K8s!

The Good:

Aligns CPUs, and Devices Multiple policies available from the get-go ("strict" included)

The Bad:

Unnecessary restriction on alignment

- Does not align hugepages
- No topology aware *scheduling*

Topology awareness enhanced

Fortunately Topology Manager is a major community focus, so most of the shortcomings are already being addressed!

History and future 1.17 issue tracker

Notable and important enhancements: <u>Removing restriction of when alignment can happen</u> (1.17) Hugepage support (1.18) Topology aware scheduling (under discussion)

The final, definitive, never-to-be-changed K8s 1.16 realtime scorecard is...

References

- DANM: https://github.com/nokia/danm/
- CPU Pooler: https://github.com/nokia/CPU-Pooler
- CNTT: <u>https://github.com/cntt-n/CNTT</u>
- CNCF TUG: <u>https://github.com/cncf/telecom-user-group</u>
- REC: <u>https://www.lfedge.org/projects/akraino/release-1/telco-appliance-radio-edge-cloud/</u>

Q&A