
Tasha Drew, Co-Chair

Intro to the Kubernetes Working
Group for Multi-tenancy

What is multi-tenancy, really?

• Why do people want multi-tenancy?

• What is a tenant?

• Different Tenancy Models

• Slack
• Kubernetes Slack, #wg-multitenancy
• Join at https://slack.k8s.io/

• Google groups
• https://groups.google.com/forum/#!forum/kubernetes-wg-multitenancy
• Join the mailing list here for automatically receiving calendar invites and

meeting notes
• Bi-weekly meeting (join google group for invite)

• Tuesday 11am Pacific Time
• Meetings are recorded and posted to YouTube

• Playlist:
https://www.youtube.com/playlist?list=PL69nYSiGNLP1tBA0W8zEe6UwPs
abGQk-j

• Github https://github.com/kubernetes-sigs/multi-tenancy/

Where can you find us?

https://slack.k8s.io/
https://groups.google.com/forum/
https://www.youtube.com/playlist%3Flist=PL69nYSiGNLP1tBA0W8zEe6UwPsabGQk-j
https://github.com/kubernetes-sigs/multi-tenancy/

Who are we?
Chairs
• @tasha (me!)

• Tasha Drew, Product Line Manager @ VMware
• Work on Project Pacific and Tanzu / Kubernetes stuff on vSphere

• @srampal
• Sanjeev Rampal, Principle Engineer @ Cisco

Project leads
• @Adrian Ludwin

• Hierarchical Namespace Controller (“HNC,” sometimes sounds like “agency”)
• Software Engineer @ Google

• @Fei Guo
• Virtual Clusters, Tenant Controller
• Software Engineer @ Alibaba

• @Jim Bugwadia
• Multi-tenancy Benchmarks
• Founder & CEO at Nirmata

Hierarchical Namespace Controller
Design: http://bit.ly/k8s-hnc-design
Code: https://github.com/kubernetes-sigs/multi-tenancy/tree/master/incubator/hnc
Status: Active development

Goal: This is an early concept to allow namespaces to be linked to each other in parent-child
relationships, and to allow certain objects from ancestors to be "visible" in their descendents, which
is achieved by copying them. This is most useful for objects such as RBAC roles and bindings - a
rolebinding made in a parent namespace will (under normal circumstances) also grant access in
child namespaces as well, allowing for hierarchical administration.

http://bit.ly/k8s-hnc-design
https://github.com/kubernetes-sigs/multi-tenancy/tree/master/incubator/hnc

Team NS

Hierarchical Namespace Controller

• Propagates policy objects from
parents to children

• Hardcoded list in v0.1 (Nov), aim to be
configurable in v0.2 (eo2019)

• Self-service subnamespaces
• No need for cluster-level privileges to

create subnamespaces

• Hierarchical authz checks
• “Subadmins” cannot deprive

“superadmins” of access

• Integrations via K8s labels
• Namespaces receive labels indicating

the subtrees they’re in.

Org NS

Service 1 NS Service 2 NS

SRE RBAC Network Policy

SRE RBAC Network Policy

Dev RBAC Team secrets

SRE RBAC Network Policy

Dev RBAC Team secrets

SRE RBAC Network Policy

Dev RBAC Team secrets

Original objects Propagated
objects

Hierarchical config

Hierarchical configHierarchical config

HNC Architecture

• Add-on controller based on kubebuilder, controller-
runtime, etc

• Two major aspects:
• Manage the hierarchy configurations
• Manage the propagated objects

• Namespaces also updated
• Labels applied to indicate the hierarchical

structure.
• Created (but never destroyed) for self-service

subnamespaces on request.

• Problems reported via conditions
• Admission controllers (webhooks) can fail so

problems can creep in.
• These are all reported via Conditions on the

HierarchyConfiguration.

Hierarchy
reconciler

Updates the in-memory forest.
Invokes the object reconciler.

Creates subnamespaces.

Object reconciler
Propagates objects from

parents to children. Updates in-
memory forest if problems are

encountered.

Object admission
controller

Forbids direct changes to
propagated objects (will likely

allow exceptions in v0.2+).

Hierarchy
admission
controller

Ensures authz and legal
hierarchies (e.g., no cycles)

In-memory forest
Maintains entire state of the namespaces; guarded by a global lock.

Virtual Clusters
Design:
https://docs.google.com/document/d/1EELeVaduYZ65j4AXg9bp3Kyn38GKDU5fAJ5LFcxt2ZU/edit#h
eading=h.7tna1yo4dzv
Code: https://github.com/kubernetes-sigs/multi-tenancy/tree/master/incubator/virtualcluster
Status: Active development

Goal: Virtual Cluster is a Kubernetes hard multi-tenancy solution for tenants who prefer a dedicated control
plane. It provides API level isolation by deploying a tenant master for each tenant. It provides compute
resource isolation by using Sandbox runtime like Kata container or gVisor. It provides network isolation using
additional tenant network namespace. Overall, we think Virtual Cluster handles the Kubernetes multi-tenancy
problem from a different angle and the community may be inspired by it to use Kubernetes in more use cases.

https://docs.google.com/document/d/1EELeVaduYZ65j4AXg9bp3Kyn38GKDU5fAJ5LFcxt2ZU/edit
https://github.com/kubernetes-sigs/multi-tenancy/tree/master/incubator/virtualcluster

Virtual Clusters architecture

Kubelet
VN-agent
Node 1

P(TA) P(TB)

Super
Master

etcd

etcd

Unified
Scheduler

TA
master

VN

VN

Tenant
Controller

Kubelet
VN-agent
Node 2

P(TA) P(TB)

TB
master

VN

VN

§ Tenant master

§ upstream K8s master

§ Tenant controller

§ Tenant lifecycle

§ Object-2-Tenant map

§ VN-agent

§ A Kubelet proxy

Pod Read
Privilege Only

VN: virtual node

Tenant Controller v2
Design: https://docs.google.com/document/d/1PkV7y_GHU_RfL2y8W-tLa98UnHuierkixXz-
5uwKjMA/edit#
Code: https://github.com/kubernetes-sigs/multi-tenancy/tree/master/tenant
Status: Ideation

Goal: Have a controller that manages tenants in a cluster, and enforces policy over the tenant as a
whole, who may have many namespaces.

A Tenant consists of a set of namespaces in which any account with sufficient permissions may create
Kubernetes objects. The number of these objects and their resources consumption are totaled over all
namespaces of a tenant.

For each metric (CPU, mem, # of objects, etc.) a limit may be set either per namespace or for the total per
tenant.

https://docs.google.com/document/d/1PkV7y_GHU_RfL2y8W-tLa98UnHuierkixXz-5uwKjMA/edit
https://github.com/kubernetes-sigs/multi-tenancy/tree/master/tenant

Multi-tenancy Benchmarks
Design: https://docs.google.com/document/d/1O-
G8jEpiJxOeYx9Pd2OuOSb8859dTRNmgBC5gJv0krE/edit#
Code: https://github.com/kubernetes-sigs/multi-tenancy/tree/master/benchmarks
Status: Active Development

Goal: Providing benchmarks that validate whether multi-tenancy has been achieved, independently
of which tool or mechanism was used for multi-tenancy.

The motivation is to decouple how multi-tenancy is provisioned and managed, from the desired
state. The proposal involves defining the desired state as a set of benchmarks organized by levels
and providing a tool for validating that a set of desired states have been achieved.

https://docs.google.com/document/d/1O-G8jEpiJxOeYx9Pd2OuOSb8859dTRNmgBC5gJv0krE/edit
https://github.com/kubernetes-sigs/multi-tenancy/tree/master/benchmarks

Questions? & More multi-tenancy!
Sessions at Kubecon San Diego:

Tuesday, November 19, 4:25pm, Room 29ABCD
Panel: Control Plane vs Data Plane: Untangling the Tenents of Multi-tenancy

In this discussion, our panelists will share their proposals for the principles of multi-tenancy,
according to both the type of concerns (control plane vs data plane) as well as the type of tenants
(such as dev teams, production teams and third-party users).

Wednesday, November 20, 5:20pm, Room 1AB
Deep Dive: Kubernetes Working Group for Multi-tenancy
Sanjeev Rampal and Adrian Ludwin (and other guest stars!)

This deep dive of the working group for Multi-tenancy will include an in-depth technical exploration
of multi-tenancy in core Kubernetes and the tooling and services the multi-tenancy working group
has been developing to mainstream how users of Kubernetes can achieve multi-tenancy.

