

CloudNativeCon

North America 2019

North America 2019

SIG Scalability Intro + Deep Dive

Matt Matejczyk, Google (mm4tt@)

Wojtek Tyczyński, Google (wojtek-t@)

About the speakers

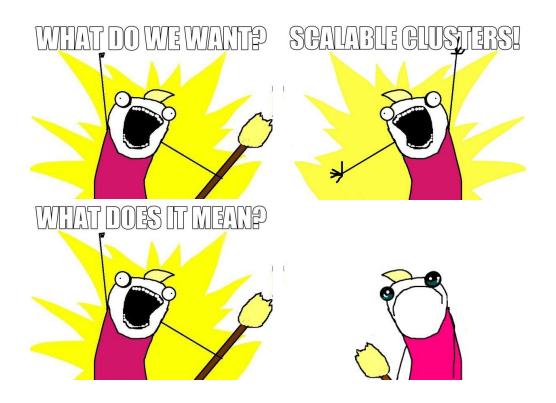
North America 2019

- Matt (mm4tt@) SIG Scalability
- Wojtek (wojtek-t@) SIG Scalability Chair

We:

- Define & Drive
- Monitor & Measure
- Coordinate & Contribute
- Persevere & Protect
- Consult & Coach

- scalability definition & goals
- performance of the system
- performance improvements
- from scalability regressions
- community about scalability


Not to confuse with SIG Autoscaling!

What is Kubernetes Scalability?

- North America 2019

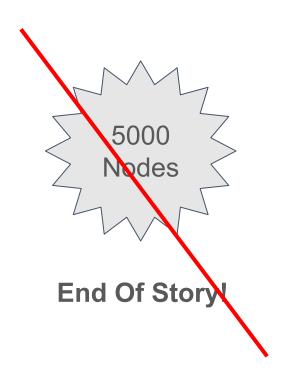
What is Scalability?

North America 2019

"Scalability is the property of a system to handle a growing amount of work by adding resources to the system."

"In computing, scalability is a characteristic of computers, networks, algorithms, networking protocols, programs and applications. An example is a search engine, which must support increasing numbers of users, and the number of topics it indexes."

What is (not) K8s Scalability?



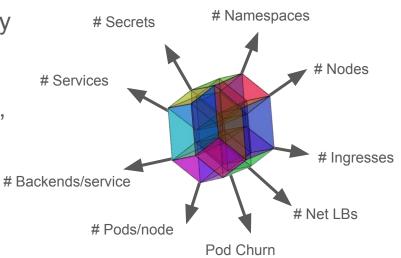
North America 2019

Scalability is **not a single number** (like 5000).

Yes, we "support" up to 5000 nodes in k8s.

But that's not even close to the whole story!

K8s Scalability Envelope



North America 2019

In fact, scalability needs to be analyzed in many more dimensions.

This subscape has many interesting properties, e.g. it's NOT a cube, it's NOT convex.

Scalability Envelope - a *safe zone*, if you're within it, your cluster is *happy*.

Scalability Envelope

North America 2019

Precisely computing the envelope boundaries is too *hard* problem.

Even if we could do that (test all possible configurations) we still need to define what it means that **kubernetes scales** for a given configuration.

To test scalability we need to define it first...

Scalability Definitions & Goals

Scalability - how to define it?

SLI - Service Level Indicator

SLO - Service Level Objective

Scalability - how to define it?

Cluster Scales

All Scalability SLOs satisfied

Scalability - SLO Coverage

- North America 2019

How K8s should scale?

Do you care about X? Is X taking Y fine?

SLI/SLO Principles

North America 2019

- User-oriented
- Testable
- Precise
- Well defined

Scalability SLIs / SLOs

North America 2019

Approved Scalability SLIs / SLOs

- 1. API Call Latency
 - a. 99% of write API calls <= 1s latency
 - b. 99% of read API calls:
 - i. <= 1s latency (for GET)
 - ii. <= 5s latency (for LIST in namespace)
 - iii. <= 30s latency (for LIST across namespaces)
- 2. Pod Startup Latency (stateless pods)
 - a. 99% startup latency <= 5s

Scalability SLIs / SLOs

North America 2019

WIP Scalability SLIs / SLOs

- Pod Startup Latency (stateful pods)
- 2. In-Cluster Network Programming Latency
- 3. DNS Programming Latency
- 4. In-Cluster Network Latency
- 5. DNS Latency

More at github.com/kubernetes/community/tree/master/sig-scalability/slos

Scalability SLO Framework

North America 2019

You promise to

Correctly configure cluster
Stay within Scalability Envelope

We promise

Satisfied Scalability SLOs

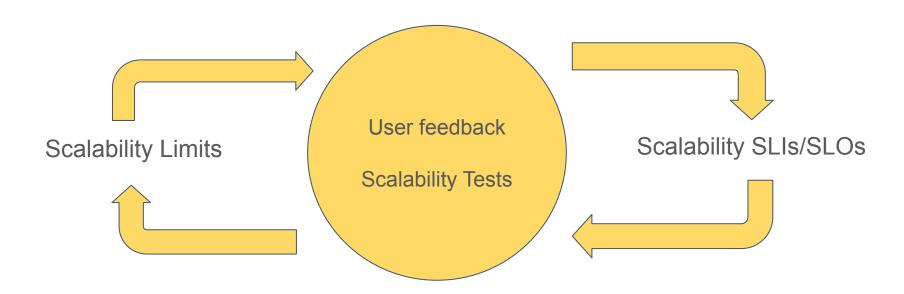
Scalability Limits

North America 2019

It's hard to precisely compute the envelope boundaries but it can be decomposed into smaller envelopes, e.g.

- # Nodes <= 5K
- # Pods <= 30 * #Nodes
- # Pods per Node <= min(110, 10*#cores)
- ...

More at


github.com/kubernetes/community/tree/master/sig-scalability/configs-and-limits/thresholds.md

Feedback Loop

North America 2019

North America 2019

Keeping K8s Scalable

Perf-test Infrastructure #1

North America 2019

Automated Scalability Testing

s	sig-scalability-gce	sig-scalability-node	sig-scalability-kubemark	sig-scalability-perf-tests	sig-scalability-benchmarks	sig-scalability-experiments	
Sun	nmary gce-cos-1	.14-scalability-100	gce-cos-1.15-scalability-100	gce-cos-1.16-scalability-10	0 gce-cos-1.17-scalability	-100 gce-master-scale-correctness	gce-master-scale-performance
gce-cos-master-scalability-100							
gce-cos-1.14-scalability-100: FLAKY 28 of 196 tests (14.3%) and 10 of 14 runs (71.4%) failed in the past 7 days							Last update: 11-05 10:39 CET Tests last ran: 11-05 00:00 CET Last green run: ac756284b
Θ	Geros-1.15-scalability-100: FLAKY 8 of 280 tests (2.9%) and 3 of 14 runs (21.4%) failed in the past 7 days						Last update: 11-05 10:41 CET Tests last ran: 11-05 08:00 CET Last green run: 670c78109
\subseteq		scalability-100: FLAKY (1.1%) and 2 of 14 ru	uns (14.3%) failed in the past	7 days			Last update: 11-05 11:01 CET Tests last ran: 11-05 04:01 CET Last green run: 3d9fbfdd6
gce-cos-1.17-scalability-100: PASSING 6 of 494 tests (1.2%) and 3 of 26 runs (11.5%) failed in the past 7 days							Last update: 11-05 10:50 CET Tests last ran: 11-05 10:00 CET Last green run: 1aae77ada
gce-master-scale-correctness: FAILING 27 of 7035 tests (0.4%) and 5 of 7 runs (71.4%) failed in the past 7 days						Last update: 11-05 10:53 CET Tests last ran: 11-05 04:02 CET Last green run: 51d891ff3	
- Show Alerts -							
~	gce-master-scale-performance: PASSING 3 of 98 tests (3.1%) and 1 of 7 runs (14.3%) failed in the past 7 days						Last update: 11-05 10:35 CET Tests last ran: 11-05 09:01 CET Last green run: 6a19261e9
\in)	er-scalability-100: FLA sts (1.1%) and 24 of 2	KY 222 runs (10.8%) failed in the	past 7 days			Last update: 11-05 10:32 CET Tests last ran: 11-05 10:09 CET Last green run: de56c9054

North America 2019

Kinds of e2e scalability tests

- 1. **Performance** = "load" + "density" test
- 2. **Correctness** = regular functional tests run at scale
- 3. Other storage, benchmarks, ...

Types of Scalability Tests

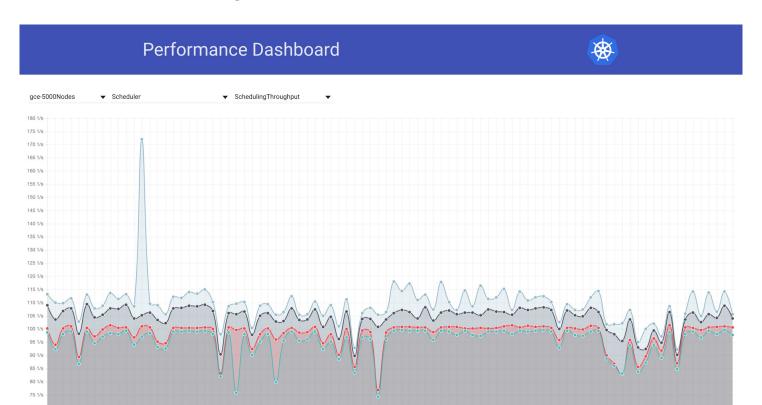
North America 2019

Periodic tests

- 1. Release blocking (K8s on GCE)
 - a. Performance 100 nodes
 - b. Performance 5000 nodes
 - c. Correctness 5000 nodes
- 2. Non-release blocking
 - a. Kubemark
 - b. Storage
 - c. Benchmarks (also microbenchmarks)
 - d.

Types of Scalability Tests

North America 201


Presubmits

- k8s.io/kubernetes
 - a. Performance K8s on GCE 100 nodes
 - b. Performance Kubemark 500 nodes
- 2. k8s.io/perf-tests
 - a. Performance K8s on GCE 100 nodes
 - b. Performance Kubemark 500 nodes

Perf-test Infrastructure #2

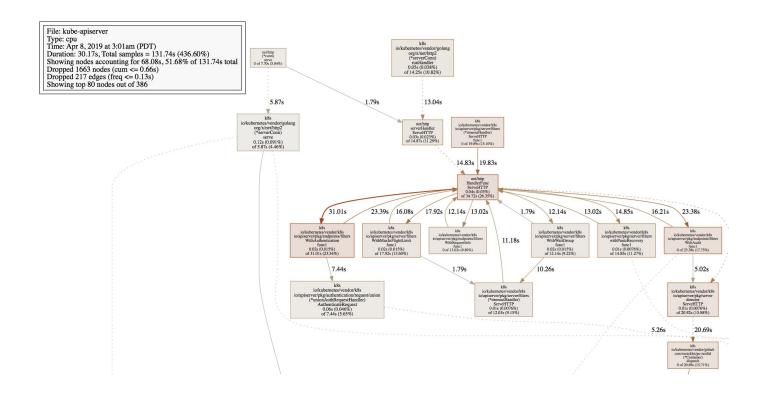
Performance Dashboard - perf-dash.k8s.io

Perf-Dash

Dashboard visualizing various metrics from CI tests across different runs.

Primitive but powerful tool for debugging performance regressions and for finding various perf related k8s characteristics, e.g.

- What is current scheduler throughput in 5K node cluster?
- API Server memory usage?
- Performance regression debugging?


Perf-test Infrastructure #3

North America 2019

Profile Gathering

Profile Gathering

North America 2019

What profiles?

- CPU Profiles
- Memory Profiles
- Mutex Profiles

What components?

- kube-apiserver
- etcd
- kube-scheduler
- kube-controller-manager

Perf-test Infrastructure #4

North America 2019

ClusterLoader2

"Bring your own Yaml!"

```
tuningSets:
 9
        - name: Uniform5qps
10
          qpsLoad:
11
            qps: 5
12
13
        steps:
14
        - name: Starting measurements
15
          measurements:
          - Identifier: APIResponsivenessPrometheus
16
17
            Method: APIResponsivenessPrometheus
18
            Params:
19
              action: start
          - Identifier: WaitForRunningMyDeploymentPods
20
            Method: WaitForControlledPodsRunning
21
22
            Params:
23
              action: start
24
              apiVersion: apps/v1
              kind: Deployment
25
              labelSelector: app = my-deployment
26
27
              operationTimeout: 5min
28
29
        - name: Creating deployments
30
          phases:
31
          namespaceRange:
32
              min: 1
33
              max: $namespaces
            replicasPerNamespace: 2
34
35
            tuningSet: Uniform5aps
            objectBundle:
36
            - basename: my-deployment
37
              objectTemplatePath: deployment.yaml
38
              templateFillMap:
39
                Replicas: {{$podsPerDeployment}}
40
41
                CpuRequest: 10m
                MemoryRequest: 10M
42
43
44
        - name: Waiting for pods to be created
45
          measurements:
46

    Identifier: WaitForRunningMyDeploymentPods

47
            Method: WaitForControlledPodsRunning
```

ClusterLoader2

Declarative paradigm - test defines a state in which a cluster should be and CL2 brings the cluster to that state.

A test also specifies **how** it should happen (e.g. throughput) and what should be measured during the execution (e.g. SLIs).

In addition, CL2 provides extra **observability** of the cluster during the test.

ClusterLoader2 API

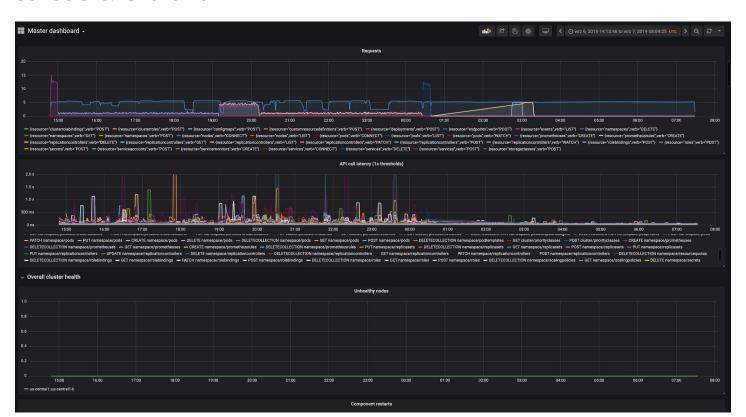
North America 2019

A test is a list of steps (executed serially).

A step can be either a collection of phases or measurements (execute parallely).

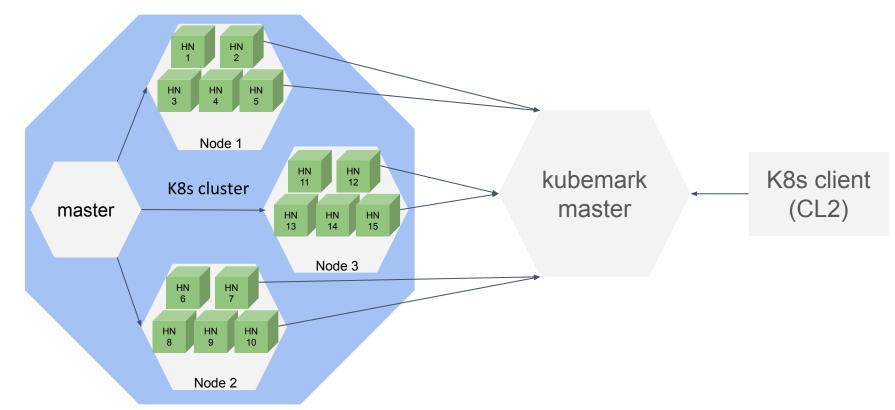
A **phase** defines a state the cluster should reach.

A measurement allows to measure something or wait for something.


Perf-test Infrastructure #5

North America 2019

Prometheus & Grafana


Perf-test Infrastructure #6

North America 2019

Kubemark

Kubemark

North America 2019

Kubemark - tool for simulating large K8s clusters for scale testing purposes.

Motivation: Cheaper scale tests!

How much cheaper? ~5000 vCPUs vs ~700vCPUs to run 5K node scale tests!

Idea:

- Control plane needs to stay the same as that's what we exercise in the tests
- Look for the savings on the node side = Hollow Node

Protecting From Regressions

Scalability Regressions

- Scalability is sensitive
- We've seen regressions come from pretty much everywhere:
 - Golang
 - Operating System
 - Controllers
 - API machinery
 - Scheduler
 - Etcd
 - Kubelet
 - 0 ...
- We often debug/fix them ourselves, or triage to relevant SIGs

Scalability Regressions

Some interesting regressions

- Golang <u>kubernetes/kubernetes/issues/75833</u>
- Cos kubernetes/kubernetes/issues/83020
- CoreDNS <u>kubernetes/kubernetes/issues/78562</u>
- Klog <u>kubernetes/kubernetes/issues/78734</u>
- NodeLifecycleController <u>kubernetes/kubernetes/issues/77733</u>
- Many, many more ...

Driving Scalability Improvements

Scalability Improvements

North America 201

Some recent improvements:

- Kubelet config polling → watching
- New events API to reduce spamming
- Cheaper node heartbeats
- EndpointSlice API
- NodeLifecycleController, TaintManger, GC-Controller improvements
- Watch serialization mechanism improvements #81914
- Watch Bookmarks
- Scheduling algorithm (rank only subset of nodes)
- IPVS as alternative for iptables
- Etcd concurrent reads

Scalability Improvements

Other improvements

- Scalability approval process
- Migrated scalability tests off public IPs
- Kubemark Improvements: HA support, system-pods, ...
- CL2 Improvements: monitoring, crashlooping pods detection, ...
- Load test extended to cover more resources: DaemonSets, Jobs, ...
- Implemented new SLIs in tests: NetworkProgrammingLatency, Dns PRogramming Latency, Network Latency, DNS Latency

North America 2019

Want to get involved?

How can you get involved?

North America 2019

kubernetes/perf-tests help-wanted

kubernetes/kubernetes help-wanted

Ping us on #sig-scalability Slack for other stuff

Where to find us?

North America 2019

- Home page: <u>README</u>
- Public Meetings: Thursdays 18.30 Warsaw time (bi-weekly)
- Slack channel: https://kubernetes.slack.com/messages/sig-scalability
- List: https://groups.google.com/forum/#!forum/kubernetes-sig-scale

— North America 2019

Q&A

North America 2019

Thanks!

