
How Spotify Migrated
HTTP Ingress Systems to
Envoy

1

Erica Manno - ericam@spotify.com
Vladimir Shakhov - vladimir@spotify.com

mailto:ericam@spotify.com
mailto:vladimir@spotify.com

About us
❏ software engineers in ATC squad (Air Traffic Control)

❏ owners of Spotify's perimeter

❏ "ops in teams"

Agenda
❏ how we migrated a part of Spotify's perimeter to Envoy

❏ future of Spotify's perimeter

❏ key takeaways from migration

4

About Spotify
❏ 248M MAUs

❏ 79 markets

❏ 8M+ RPS

❏ 1500+ engineers, 280+ squads

❏ 1200+ microservices in production

About Spotify (cont.)

Spotify's perimeter

Hermes: proprietary protocol

Old web gateway: impl

❏ underinvested

❏ service discovery headaches

❏ high operational cost

Old web gateway - limitations

Why migrate?
❏ unified perimeter

❏ avoid fragmentation or duplication of features

❏ cloud native perimeter

❏ xDS

❏ vibrant contributor community

Why Envoy?

Enter Edge

13

1. transparent to owners of upstreams

2. transparent to end users of upstreams

3. gradual

4. quick fallback

The migration - requirements

14

❏ non-critical service that we own

❏ optimize for speed over safety

❏ global DNS change (#yolo)

The migration - stage 1

15

❏ critical service, owned

 by another team

The migration - stage 2

❏ optimize for safety

16

1. shift some traffic to Edge

2. monitor, react

3. repeat, until all traffic is shifted to Edge

Stage 2 - strategy

webplayer - before Edge

webplayer on Edge - swap LBs

webplayer on Edge - ramp up traffic

20

❏ 130+ remaining HTTP upstreams

❏ reduce migration surface

❏ add missing config params to Edge

❏ script away!

The migration - stage 3

❏ “panic button” indispensable

❏ coordination and communication, trust was built

❏ in time for Spotify hack week!

❏ contributing back PRs! #1 #2

What went well

https://github.com/envoyproxy/envoy/pull/8436
https://github.com/envoyproxy/envoy/pull/8989

❏ zero downtime: not quite

❏ grasping the failure modes

❏ software entropy

❏ state drift

Learnings and failures

❏ support for more auth schemes

❏ rate limiting

❏ automated mitigation against bad deploys

Future plans - short term

❏ Move all traffic behind edge

❏ remove header decoration from ext_authz service

❏ declarative infrastructure

❏ leverage K8s

Future plans - long term

1. design for failure

2. try, fail, adjust, repeat

3. if possible, reduce migration surface

4. you can do it!

Key takeaways

Thanks for listening!
atc@spotify.com

Join the Band!
ATC is hiring (wink-wink)

spotifyjobs.com

mailto:atc@spotify.com
https://www.spotifyjobs.com/

