
Maya Kaczorowski, Google Cloud

How Kubernetes components
communicate securely in your cluster

Maya Kaczorowski

Product Manager,
Container Security

@MayaKaczorowski

Agenda

How do Kubernetes
components
communicate securely
in your cluster?

Components of Kubernetes

Communications security

Kubernetes’ Certificate Authority (CA)

1

2

3

Protection of Kubernetes communications4

Summary5

Components of
Kubernetes

Your cluster - managed by Kubernetes components

Master nodes

Kubernetes controllers

Worker nodes

Kubernetes components

Pod

Container
etcd

Control plane Nodes

Pod

Container

Admins

Your cluster - managed by Kubernetes components

Master nodes

Kubernetes controllers

etcd

Control plane Nodes

Worker nodes

Kubernetes components

Pod

Container

Pod

Container

Admins

Your cluster - lots of Kubernetes components!

Master nodes Worker nodes

kube-dns

Control plane Nodes

Pod

Container

kube-apiserver

kube-scheduler

kube-controller-manager

...

kubelet

kube-proxy

D
ae

m
on

se
ts

etcd etcd

Admins

Your cluster - communications between components

Master nodes Worker nodes

kube-dns

Control plane Nodes

Pod

Container

kube-apiserver

kube-scheduler

kube-controller-manager

...

kubelet

kube-proxy

D
ae

m
on

se
ts

etcd etcd

Admins

Your cluster - communications between components

Master nodes Worker nodes

kube-dns

Control plane Nodes

Pod

Container

kube-apiserver

kube-scheduler

kube-controller-manager

...

kubelet

kube-proxy

D
ae

m
on

se
ts

etcd etcd

Admins

Communications security

Authentication Integrity Encryption

Different trust is required for different parties

Alice
Client

i.e. Requestor

Bob
Server

i.e. Receiver

Carol
Client + Server

Carlos
Client + Server

Client -> Server Peer

Transport Layer Security (TLS)

ClientHello

Alice
Client

Bob
Server

ServerHello
Certificate

ServerHello Done
ClientKeyExchange
ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

Request
Response

SYN
SYNACK

ACK

TCP
Establish connection

TLS
Authenticate and
establish encryption

Request/response
Transmit data

Person-in-the-middle (MitM) attack

Alice
Client

Bob
Server

Eve
Eavesdropper

What’s a Certificate Authority?
It’s a trusted third party

Root cert: self-signed

Intermediate cert

Leaf cert

Private keys

● You generate it
● Stays private
● Can be used to sign things to

attest identity

● You or a CA signs it
● Is public and easily discoverable
● Can be used to verify identity

Certificates

Kubernetes’ Certificate
Authority (CA)

“The various Kubernetes components have a TON of different
places where you can put in a certificate/certificate authority.
When we were setting up a cluster I felt like there were like 10
billion different command line arguments for certificates
and keys and certificate authorities and I didn’t understand
how they all fit together.”

- Julia Evans
https://jvns.ca/blog/2017/08/05/how-kubernetes-certificates-work/

https://jvns.ca/blog/2017/08/05/how-kubernetes-certificates-work/

Everything
needs a
certificate!

Use kubeadm or
generate and
import the
certificates
yourself

Kubernetes cluster: CAs and certs

External root CA

etcd-ca
kubernetes-ca
“cluster root CA”

kubernetes-front-
proxy-cakube-etcd

kube-etcd-peer

kube-etcd-health
check-client

front-proxy-client

kube-apiserver-
etcd-client

kube-apiserver

kube-apiserver
-kubelet-client

Server cert

Client cert

Peer cert

Certs in your cluster

Master nodes Worker nodes

kube-dns

Control plane Nodes

Pod

Container

kube-apiserver

kube-scheduler

kube-controller-manager

...

kubelet

kube-proxy

D
ae

m
on

se
ts

etcd etcd

Admins

Server cert

Client cert

Peer cert

How a component gets a cert

certificates.k8s.io
Activate: --cluster-signing-cert-file

--cluster-signing-key-file

Certificate Signing Request (Beta in Kubernetes)
● Create request
● Send request to apiserver
● Approve request
● Download and use cert

Kubelet certificate renewal and rotation

kubelet --rotate-certificates
kube-controller-manager --experimental-cluster-signing-duration

To set certificate rotation: (Beta in Kubernetes 1.8)

Default: Kubelet certs issued with 1 year expiration

To check certificate: (Stable in Kubernetes 1.15)
kubeadm alpha certs check-expiration

To renew certificate: (Stable in Kubernetes 1.15, default in 1.17 for node)
Automatic kubeadm upgrade apply --certificate-renewal=true
Manual kubeadm alpha certs renew (--use-api)

Protection of Kubernetes
communications

Communications in your cluster

Master nodes Worker nodes

kube-dns

Control plane Nodes

Pod

Container

kube-apiserver

kube-scheduler

kube-controller-manager

...

kubelet

kube-proxy

D
ae

m
on

se
ts

etcd etcd

1

2

3

4

5

Admins

From the API server to the kubelet

From the API server to the kubelet: Unauthenticated TLS
● --kubelet-certificate-authority to specify CA to

verify kubelet’s server certificate
● SSH tunnel (deprecated) - and still unauthenticated

From the API server to node, pod or service: Plain HTTP
● Shouldn’t happen
● Specify HTTPs endpoint

1
Default Options

Authentication

Integrity

Encryption

Authentication

Integrity

Encryption

Master nodes Worker nodes

kube-apiserver kubelet

etcd etcd

3

4

5

1

2

From the kubelet to the API server2

From the kubelet to the API server: Mutual TLS, if using Node
Authorizer
● Requests over TLS
● apiserver listens on HTTPs port 443
● Node Authorizer authentication mode - kubelets use a

credential in the system:nodes group

From the pod to the API server: Server-only authentication TLS,
and client authenticates with bearer token

Default

Authentication

Integrity

Encryption

Master nodes Worker nodes

kube-apiserver kubelet

etcd etcd

3

4

5

1

2

Authentication

Integrity

Encryption

Between the API server and etcd3

From the API server to etcd: Local host HTTP port 80
● mTLS with --etcd-certfile and --etcd-keyfile

From etcd to the API server: HTTPs port 443

Default

Master nodes Worker nodes

kube-apiserver kubelet

etcd etcd

3

4

5

1

2

Options

Authentication

Integrity

Encryption

Authentication

Integrity

Encryption

Between two instances of etcd4

From an instance of etcd to a peer instance of etcd: Mutual TLS
Default

Authentication

Integrity

Encryption

Master nodes Worker nodes

kube-apiserver kubelet

etcd etcd

3

4

5

1

2

From the admin to the API server5

From the admin to the API server:
Depends on your authentication method(s)!
● OAuth tokens
● x509 client certificates
● static passwords
● Authenticating proxy
● … don’t forget about anonymous auth!

Options

Authentication

Integrity

Encryption

Master nodes Worker nodes

kube-apiserver kubelet

etcd etcd

3

4

5

1

2

Other connections

From a node to another node: Depends on your infrastructure

From a pod to another pod: Neither authenticated nor encrypted
● Restrict traffic with Network Policy
● Encrypt traffic with a service mesh like Istio

Summary

Communications in your cluster - summary
From To Default What you should do Options

API server kubelet --kubelet-certificate-authority

API server nodes, pods, services Specify HTTPs endpoint

kubelet API server Use Node Authorizer

nodes, pods, services API server

API server etcd
Local connection

--etcd-certfile, --etcd-keyfile

etcd API server

etcd etcd

Admin API server Don’t allow anonymous authentication

3

2

1

4

5

Authentication

Integrity

Encryption

Your options on GKE
Default
● Cluster root CA, etcd CA set up for you
● Cluster root CA certs have an expiration of 5 years
● API server to kubelet traffic is authentication in GKE v1.13+
● Certificate Signing Request API uses the cluster root CA, with automated approval of CSRs

Learn more: https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-trust

Options
● Credential rotation

https://cloud.google.com/kubernetes-engine/docs/how-to/credential-rotation
● Shielded GKE nodes: CSR bound to machine identity, protected by vTPM element

https://cloud.google.com/kubernetes-engine/docs/how-to/shielded-gke-nodes
● Disable basic authentication and client certificates unless needed (disabled in v1.12+)

https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-trust
https://cloud.google.com/kubernetes-engine/docs/how-to/credential-rotation
https://cloud.google.com/kubernetes-engine/docs/how-to/shielded-gke-nodes

Kubernetes CIS v1.5.0 benchmark - cluster trust

1.2 API server
● 1.2.6 --kubelet-certificate-authority
● 1.2.29 --etcd-certfile and --etcd-keyfile
● 1.2.30 --tls-cert-file and --tls-private-key-file

1.3 Controller manager
● 1.3.6 RotateKubeletServerCertificate

2 etcd
● Basically this whole section

3.1 Authentication and authorization
● 3.1.1. Client certificate authentication should not be used for users

4 Kubelet
● 4.2.10 --tls-cert-file and --tls-private-key-file
● 4.2.11 --rotate-certificates
● 4.2.12 RotateKubeletServerCertificate

Best practices

● Set up your cluster’s CAs using kubeadm, if not using a
managed service

● Rotate your certs!
● For specific paths in your cluster,

○ Specify a kubelet CA to authenticate the API server to
the kubelet

○ Use Node Authorizer for kubelet to API server
authentication

On GKE:
● Use Shielded GKE Nodes
● Perform a credential rotation for your cluster root CA

Learn more
For Kubernetes certificates:
● https://kubernetes.io/docs/setup/best-practices/certificates/
● https://jvns.ca/blog/2017/08/05/how-kubernetes-certificates-work/
● https://github.com/kelseyhightower/kubernetes-the-hard-way/blob/master/docs/

04-certificate-authority.md

For GKE cluster trust:
● https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-trust

For container security on GKE:
● cloud.google.com/containers/security
● g.co/gke/security
● g.co/gke/hardening

https://kubernetes.io/docs/setup/best-practices/certificates/
https://jvns.ca/blog/2017/08/05/how-kubernetes-certificates-work/
https://github.com/kelseyhightower/kubernetes-the-hard-way/blob/master/docs/04-certificate-authority.md
https://github.com/kelseyhightower/kubernetes-the-hard-way/blob/master/docs/04-certificate-authority.md
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-trust

Q&A

