
Maya Kaczorowski, Google Cloud

How Kubernetes components 
communicate securely in your cluster



Maya Kaczorowski

Product Manager, 
Container Security

@MayaKaczorowski



Agenda

How do Kubernetes 
components 
communicate securely 
in your cluster?

Components of Kubernetes

Communications security

Kubernetes’ Certificate Authority (CA)

1

2

3

Protection of Kubernetes communications4

Summary5



Components of 
Kubernetes



Your cluster - managed by Kubernetes components
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Your cluster - lots of Kubernetes components!

Master nodes Worker nodes

kube-dns

Control plane Nodes

Pod

Container

kube-apiserver

kube-scheduler

kube-controller-manager

...

kubelet

kube-proxy

D
ae

m
on

se
ts

etcd etcd

Admins



Your cluster - communications between components
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Your cluster - communications between components
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Communications security



Authentication Integrity Encryption



Different trust is required for different parties
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Transport Layer Security (TLS)
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Person-in-the-middle (MitM) attack
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What’s a Certificate Authority? 
It’s a trusted third party

Root cert: self-signed

Intermediate cert

Leaf cert



Private keys

● You generate it
● Stays private
● Can be used to sign things to 

attest identity

● You or a CA signs it
● Is public and easily discoverable
● Can be used to verify identity

Certificates



Kubernetes’ Certificate 
Authority (CA)



“The various Kubernetes components have a TON of different 
places where you can put in a certificate/certificate authority.
When we were setting up a cluster I felt like there were like 10 
billion different command line arguments for certificates 
and keys and certificate authorities and I didn’t understand 
how they all fit together.”

- Julia Evans
https://jvns.ca/blog/2017/08/05/how-kubernetes-certificates-work/ 

https://jvns.ca/blog/2017/08/05/how-kubernetes-certificates-work/


Everything 
needs a 
certificate!

Use kubeadm or 
generate and 
import the 
certificates 
yourself



Kubernetes cluster:        CAs and      certs
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Certs in your cluster
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How a component gets a cert

certificates.k8s.io
Activate: --cluster-signing-cert-file

--cluster-signing-key-file

Certificate Signing Request (Beta in Kubernetes)
● Create request
● Send request to apiserver
● Approve request
● Download and use cert



Kubelet certificate renewal and rotation

kubelet --rotate-certificates
kube-controller-manager --experimental-cluster-signing-duration

To set certificate rotation: (Beta in Kubernetes 1.8)

Default: Kubelet certs issued with 1 year expiration

To check certificate: (Stable in Kubernetes 1.15)
kubeadm alpha certs check-expiration

To renew certificate: (Stable in Kubernetes 1.15, default in 1.17 for node)
Automatic kubeadm upgrade apply --certificate-renewal=true
Manual kubeadm alpha certs renew (--use-api)



Protection of Kubernetes 
communications



Communications in your cluster
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From the API server to the kubelet

From the API server to the kubelet: Unauthenticated TLS
● --kubelet-certificate-authority to specify CA to 

verify kubelet’s server certificate
● SSH tunnel (deprecated) - and still unauthenticated

From the API server to node, pod or service: Plain HTTP
● Shouldn’t happen
● Specify HTTPs endpoint
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From the kubelet to the API server2

From the kubelet to the API server: Mutual TLS, if using Node 
Authorizer
● Requests over TLS
● apiserver listens on HTTPs port 443
● Node Authorizer authentication mode - kubelets use a 

credential in the system:nodes group

From the pod to the API server: Server-only authentication TLS, 
and client authenticates with bearer token
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Between the API server and etcd3

From the API server to etcd: Local host HTTP port 80
● mTLS with --etcd-certfile and --etcd-keyfile

From etcd to the API server: HTTPs port 443
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Between two instances of etcd4

From an instance of etcd to a peer instance of etcd: Mutual TLS
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From the admin to the API server5

From the admin to the API server:
Depends on your authentication method(s)!
● OAuth tokens
● x509 client certificates
● static passwords
● Authenticating proxy
● … don’t forget about anonymous auth!
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Other connections

From a node to another node: Depends on your infrastructure

From a pod to another pod: Neither authenticated nor encrypted
● Restrict traffic with Network Policy
● Encrypt traffic with a service mesh like Istio



Summary



Communications in your cluster - summary
From To Default What you should do Options

API server kubelet --kubelet-certificate-authority 

API server nodes, pods, services Specify HTTPs endpoint

kubelet API server Use Node Authorizer

nodes, pods, services API server

API server etcd
Local connection

--etcd-certfile, --etcd-keyfile

etcd API server

etcd etcd

Admin API server Don’t allow anonymous authentication
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Your options on GKE
Default
● Cluster root CA, etcd CA set up for you
● Cluster root CA certs have an expiration of 5 years
● API server to kubelet traffic is authentication in GKE v1.13+
● Certificate Signing Request API uses the cluster root CA, with automated approval of CSRs

Learn more: https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-trust 

Options
● Credential rotation 

https://cloud.google.com/kubernetes-engine/docs/how-to/credential-rotation 
● Shielded GKE nodes: CSR bound to machine identity, protected by vTPM element 

https://cloud.google.com/kubernetes-engine/docs/how-to/shielded-gke-nodes
● Disable basic authentication and client certificates unless needed (disabled in v1.12+)

https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-trust
https://cloud.google.com/kubernetes-engine/docs/how-to/credential-rotation
https://cloud.google.com/kubernetes-engine/docs/how-to/shielded-gke-nodes


Kubernetes CIS v1.5.0 benchmark - cluster trust

1.2 API server
● 1.2.6 --kubelet-certificate-authority
● 1.2.29 --etcd-certfile and --etcd-keyfile
● 1.2.30 --tls-cert-file and --tls-private-key-file

1.3 Controller manager
● 1.3.6 RotateKubeletServerCertificate

2 etcd
● Basically this whole section

3.1 Authentication and authorization
● 3.1.1. Client certificate authentication should not be used for users

4 Kubelet
● 4.2.10 --tls-cert-file and --tls-private-key-file
● 4.2.11 --rotate-certificates
● 4.2.12 RotateKubeletServerCertificate



Best practices

● Set up your cluster’s CAs using kubeadm, if not using a 
managed service

● Rotate your certs!
● For specific paths in your cluster,

○ Specify a kubelet CA to authenticate the API server to 
the kubelet

○ Use Node Authorizer for kubelet to API server 
authentication

On GKE:
● Use Shielded GKE Nodes
● Perform a credential rotation for your cluster root CA



Learn more
For Kubernetes certificates:
● https://kubernetes.io/docs/setup/best-practices/certificates/ 
● https://jvns.ca/blog/2017/08/05/how-kubernetes-certificates-work/
● https://github.com/kelseyhightower/kubernetes-the-hard-way/blob/master/docs/

04-certificate-authority.md  

For GKE cluster trust:
● https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-trust

For container security on GKE:
● cloud.google.com/containers/security
● g.co/gke/security
● g.co/gke/hardening

https://kubernetes.io/docs/setup/best-practices/certificates/
https://jvns.ca/blog/2017/08/05/how-kubernetes-certificates-work/
https://github.com/kelseyhightower/kubernetes-the-hard-way/blob/master/docs/04-certificate-authority.md
https://github.com/kelseyhightower/kubernetes-the-hard-way/blob/master/docs/04-certificate-authority.md
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-trust
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