

Raghu Yeluri & Haidong Xia

Intel Corporation

TEE-based KMS Plugin for
encryption of Kubernetes Secrets

Agenda

✓ K8s Secrets encryption - Overview

✓ TEE-based KMS plugin - our proposal

✓ Demo

✓ Summary & Next Steps

K8s Secrets - basics

✓ K8s Secrets: credentials, configuration, API key,
keys, etc.

• used by the System/Containers at build
time or runtime

✓ Secrets stored in etcd

• etcd = distributed Key-Value data store

✓ Default K8s setup: etcd contents not encrypted.

• Secrets are stored in plaintext (base64
encoded)

✓ K8s 1.7+ introduced at-rest encryption for etcd.

• API Server supports multiple Encryption
Providers. (local and remote)

Secret
volume

API
Server

Etcd

Secret
volume

Master

Worker
Node

Worker
Node

Cluster

K8s Secret Encryption: Local Encryption
Provider

✓ Encryption Keys stored on API Server

• AESCBC/AESGCM providers. Key(s) in
YAML EncryptionConfig file on API Server.

✓ Secrets encrypted prior to storage in etcd.
Decrypted in API Server prior to use.

✓ Threat Model:

• Mitigates : Attacker accessing etcd
database (etcd compromise).

• Doesn’t mitigate: Adversary accessing
the API Server (host compromise)

Login: mydog
Password: lassi

Login: xc$3e!23333
Password: 233Dc34223

Kubernetes Master

Encryption
Configuration

KMS
Provider

etcd

Apiserver

Kind:EncryptionConfiguration

apiversion:apiserver.config.K8s.io/v1

resources:

-secrets

providers:

-aescbc:

keys:

-name: key1

key : 9rihlvmie6+Ixv0cjcuak==

EncryptionConfiguration.yaml

Secret

K8s Secrets Encryption: KMS Encryption
Provider

✓ Encryption keys not stored on the API Server – key
(s) stored in a remote KMS.

✓ Uses envelope encryption scheme
• Data/secret encrypted with a data encryption key

(DEK)

• New DEK is generated for each encryption

• DEKs are wrapped with key encryption key (KEK)

• Encrypted secrets and encrypted DEKs stored in etcd.

• KEKs stored and managed in remote KMS

✓ Mitigates :
• Attacker accessing etcd database (etcd compromise).

• Access to API Server doesn’t provide access to KEK. So,
can’t access DEKs and hence can’t access secrets.

secret1

secret2

secret3

secret4

DEK-1

DEK-2

DEK-3

DEK-4

KEK-1

KMS

Login: mydog
Password: lassi

Login: xc$3e!23333
Password: 233Dc34223

Kubernetes Master

Encryption
Configuration

KMS
Plug-in

KMS
Provider

etcdApiserver

DEK: xc$3e!23333

Secret

KMS Encryption Provider – how it works

✓ KMS Provider uses KMS plugin to interface with
remote KMS.

✓ KMS plugin: gRPC Server running on the Master
node.

✓ To save a Secret in etcd:
• KMS Provider generates unique DEK using AESCBC.

• KMS Provider encrypt secrets with the DEK locally.

• KMS Plug-in sends DEK to remote KMS. DEK is wrapped
with KEK at the remote KMS.

• Wrapped DEKs and encrypted secrets stored in etcd
database. Plaintext DEKs are not saved to disk or etcd.

✓ Process happens in reverse for reading Secrets. KMS

Login: mydog
Password: lassi

Login: xc$3e!23333
Password: 233Dc34223

Kubernetes Master

Encryption
Configuration

KMS
Plug-in

KMS
Provider

etcdApiserver

DEK: xc$3e!23333

Secret

API Server
KMS Provider

KMS plugin
Remote KMS

Store Secret

etcd

Generate
DEK

Encrypt Secret

Encrypt
Secret

Encrypt DEK Encrypt DEK w/ KEKKMS specific
protocol(Encrypted

DEK, KID)

Store
(enc. secret + enc. DEK)

Fetch Secret Fetch Secret

Check
DEK Cache

Decrypt Secret

Decrypt DEK Decrypt DEK w/ KEK

Decrypt
secret

KMS specific
protocol

KMS Encryption Provider – the flow.

KMS Provider - Key Observations

✓ API Server has to go to remote KMS for:
• encryption of DEKs, prior to writing the secrets to etcd.
• decryption of DEKs, while reading the secrets from etcd

Performance and latency concern.

✓ KMS Provider supports caching of DEKs (configurable)… but..
• with a cache: DEKs are in the clear in the API Server memory.

✓ DEKs are in the clear in API Server memory
• Compromised API server/host, can compromise access to DEKs ->

access to secrets in etcd (offline)

Our Solution
Proposal: TEE-
based KMS
Plugin

• Two objectives:

• Address Performance/Latency
concerns – reduce/minimize remote
KMS interactions with out
compromising security.

• Address the following threats:

• etcd compromise

• Attacker accessing DEKs in memory
of API Server (Host compromise)

What is a TEE?

✓ A Trusted Execution Environment (TEE) is a secure area protected
by the processor. (aka. Enclave)

✓ Provides hardware-enforcement so that:

• Code loaded inside TEE is operator-authorized code.

• Data inside TEE cannot be read/modified from outside the
TEE.

✓ Guarantees code and data confidentiality and integrity.

✓ Threats protected:

▪ Malicious/compromised admin

▪ Malicious/compromised tenant of a hypervisor

▪ Malicious/compromised network

▪ Compromised operating system/BIOS

▪ One Example of TEE: Intel® SGX.

TEE-based KMS Plugin - Concept

✓ gRPC Server with an embedded Intel® SGX
Enclave.

✓ With Enclave Attestation, cache the KEK(s) from
KMS into the Enclave.

✓ Encryption/decryption Secrets in the Enclave
▪ Create new DEKs in Enclave.

▪ Cache DEKs in Enclave. So, never in the
clear.

✓ Encrypt/decrypt DEKs in Enclave
▪ Minimize going to remote KMS.

✓ Encrypted secrets & encrypted DEKs written to
etcd by API Server.

✓ Decrypted Secrets volume mounted (tmpfs) or
environment variables for Pods.

API Server

TEE-based KMS Plugin

gRPC Server

Plugin functions

etcd

KMS

Master

Intel® SGX Enclave

KEK(s) DEKs Crypto

Code

TEE-based KMS Plugin – Details (1)

• Initialize:
• Create TEE (Intel SGX), Cache KEK (s) in the TEE,

when KMS plugin starts (or, on demand).

• Cache KEK after Attestation of TEE by remote
KMS.

• Encrypt Secret:
• Secret sent to TEE.

• Generate new key (DEK) and encrypt Secret.

• Encrypt DEK with the KEK.

• Return encrypted secret and wrapped DEK to
API Server.

• API Server stores encrypted secret+enc DEK
in etcd.

API Server
TEE-based KMS Plugin

gR
P

C
Se

rv
er

KMS

Create KEKs

Initialize Manage

Plugin functions

Intel® SGX Enclave

Master

Encrypt decrypt

KEK(s) DEKs Crypto

Code
Etcd

TEE-based KMS Plugin – Details (2)

• Decrypt Secret:
• Decrypt secret request sent from API

Server to Plugin functions.

• Plugin function separates Cipher
Secret and Cipher DEK

• Decrypt DEK if not in Enclave Cache
(with KEK or go to remote KMS).

• Decrypt secret in Enclave.

• Plugin returns secret to API Server.

API Server
TEE-based KMS Plugin

gR
P

C
Se

rv
er

KMS

Create KEKs

Initialize Manage

Plugin functions

Intel® SGX Enclave

Master

Encrypt decrypt

KEK(s) DEKs Crypto

Code
Etcd

16

Demo Scenarios

KMS
KMS

PluginDEK Cache

API server

Default Implementation:

KMS
KMS

Plugin

DEK Cache in
enclave

API server

Demo 1: DEK cached in SGX Enclave of the KMS plugin

KMS
KMS

Plugin
KEK and

DEK Cache in
Enclave

API server

Demo 2: DEK and KEK (manual) cached in Enclave
in KMS plugin

KMS
KMS

Plugin
KEK and

DEK Cache in
Enclave

API server

Demo 3: Attestation of Enclave to provision KEK
from KMS to KMS plugin, Encrypt/Decrypt of secrets

in the Enclave

Enclave
attestation

Demo environment

17

K8s master (NUC7i7BNH) KMS server

worker node

vaultKEK(s)

Kubernetes-vault (Golang)
kms-plugin

K8s: v1.7

Enclave key caching (C)

Next Steps

• Complete the demo/POC to show full functionality of the TEE-
based KMS plugin.
• Enclave attestation, caching of KEKs and encrypt/decrypt of secrets in

TEE

• KEP for API Server changes for TEE-based KMS Provider/plugin

• SGX-based KMS Plugin reference implementation for the
approved KEP

18

Backup

