

Eric Tune
Google, Inc.

Growth and Design Patterns in
the Extensions Ecosystem

API Extensions
Kubernetes APIs are mostly about Containers: Pod, Service

The Kubernetes Resource Model (KRM) is:
• a pattern for building declarative APIs
• is not specific to Containers.
• easily accessible

What KRM Isn't Quite
• It isn't quite API management.
• It isn't quite a Restful Web API Framework
• It isn't just JSONSchema or OpenAPI.
• It isn't Terraform

What it is

• Not just for containers anymore.
• A KRM API is both a config format and an API.
• It is a system for building consistent declarative APIs.
• KRM APIs share:

• a CLI
• Metadata, Labels, Annotations
• State storage
• Authentication/Authorization/Auditing
• Consistency model
• Language Clients and Wire Protocols
• Schema Reflection
• Dry-run and Apply
• Client Side Configuration and Packaging Tools

Examples
ML

• Kubeflow
• Seldon.io
• PipelineAI

CI & CD
• Tekton
• Jenkins-X
• Argo-CD

Serverless
• Knative
• Kyma

Storage
• Rook
• OpenEBS.io

Mesh / Proxy
• Istio
• linkerd
• Kong Kuma
• Traefik

Database Operators
• Kafka (Strimzi)
• PostgreSQL

(CrunchyData, Zalando)

CNCF uses KRM

Graduated

Incubating

Sandbox

containerd

CoreDNS

OpenTracing Linkerd

gRPC TUF Helm Notary

NATS Helm CRI-O TiKV

SPIFFE SPIRE Cortex
CloudEvents in-toto
OpenMetrics Flux
Buildpacks Dragonfly
Virtual Kubelet Brigade
Telepresence

Popular Operator Using KRM in Project

Prometheus

 Envoy

Fluentd

etcd

Harbor

Thanos

CNI Jaeger

Vitess Rook

Open Policy Agent

OpenTelemetry Falco

KubeVirt KubeEdge

Network Service Mesh

OpenEBS Strimzi

18
Projects

136
Types

CNCF uses KRM
KRM APIs defined in 17 CNCF projects

Another 6 CNCF projects with 3rd party KRM API

2014

Kubernetes 0.1

~5 Resources
in K8s

2015

Kubernetes 1.0

~25 Resources in
K8s

2016

TPRs

Operators

2017

TPR → CRD

~400 Resources
on Github

2018

Extensibility
maturing

Webhooks
2019

> 5000 Resources

Extensibility is GA

CC SA 3.0 https://commons.wikimedia.org/wiki/File:Shells_display_GNM_2017_01.jpg

How to collect Seashells
There is no zoo or museum with all the shells.

Walk on the beach. Pick up everything that looks like a shell.

Sit down. Throw away the stones.

Sort them. Set aside the duplicates.

Study them. Look for common patterns and differences.

How to collect KRM APIs
There is no list with all the APIs.

Search Github for everything that looks related to a KRM API.

Try to parse the files. Throw away ones that don't parse.

Sort them by API Group and Kind. Set aside the revisions.

Search for patterns in the schemas. Identify patterns.

What I found
• 27387 YAML files containing "CustomResourceDefinition"
• Spanning 5690 GitHub Repos
• 126376 KRM objects
• 67672 CRD objects
• 7967 unique CRD objects
• 5605 different (Group, Kind) tuples

New Types

New API Groups

Controller Patterns

GovernorEnforcerProvisionerComposite

Creates KRM Creates non-KRM Acts on
Requests

Acts Continuously

Creates Resources Does not Create Resources

CC Attribution SA 3.0 https://commons.wikimedia.org/wiki/File:Textile_cone.JPG

Provisioner Pattern
•

Composite Pattern

Enforcer Pattern

Governor Pattern

Pair Patterns
• X & X-Class:

• X & X-Claim

• X & Cluster-X

X / ClusterX
What:
- Two types with the same schema
- X is Namespaced
- ClusterX is not (cluster-scoped)

Why:
- Cluster resources are referenceable by all users of the
cluster. Created by Admins
- Namespaced version of the resource is referenceable only
within a namespace. Typically can be created by ordinary
user.

X / ClusterX
Examples

• Kubernetes:
• Role / ClusterRole
• RoleBinding / ClusterRoleBinding.

• Cert-Manager:
• Issuer / ClusterIssuer

• tekton.dev : Task / ClusterTask
• + 40 more

X / XClaim
What:

• XClaim is created by a user, representing a request.
• XClaim is fulfilled with an X resource.

Why:
• X and XClaim have different lifetimes
• X can be recycled.
• Separate infrastructure provisioning API from

implementation.
• Different permissions for X and XClaim.

X / XClaim
What:
When to use it
When not to use it.
Pros/Cons.
Examples of it.

X / XClaim
Examples

• Kubernetes:
• PersistentVolumeClaim → PersistentVolume

• openebs.io
• BlockDeviceClaim
• StoragePoolClaim

• Rook
• ObjectBucketClaim

• 8 other APIs

X / XClass
What?

• XClass holds defaults or preferences for type X.
• X copies the values from XClass when it is created.
•

How?
• Cluster administrator creates an XClass
• Less-privileged users reference XClass by name from X's.
• Either:

• XClass values copied into X when it is created (Enforcer)
• e.g. PriorityClass

• OR XClass affects created resources (Provisioner/Composite)
• e.g. StorageClass

X / XClass
Type X → refers to an→ XClass
Examples:

• Kubernetes APIs
• PVC → StorageClass
• Pod → Runtime Class
• VolumeSnapshot → VolumeSnapshotClass

• Other APIs using the pattern:
• Crossplane.io :

• 17 XClass types
• Cluster API:

• Machine → MachineClass
• SAPCloud.io (Gardner):

• 5 XClass types
•

© Jan Arendtsz Some Rights Reserved https://www.flickr.com/photos/janarendtsz/41629398621

Adoption Levels Vary
• CRDs 5605 100x!
• Extension API Servers 50

• Validation 3356 of 5605
• AdditionalPrinterColumns 1676 "

• Status Subresource 2673 "
• Status.Conditions 287 "
• Scale Subresource 57 "

• ClusterX Pattern 43 "
• XClass Pattern 28 "
• XClaim Pattern 8 "

Summary
• KRM APIs are not just about containers and Kubernetes
• Large and Rapidly Growing KRM Ecosystem

• 2000+ APIs you can easily install and use.
• Broad range of uses
• 1000+ expected to be added in next year.

• Consistency across all those APIs
• Reuse of tooling. Reuse understanding.

• Framework adoption much faster than Pattern adoption.
• If you are building an API, try http://kubebuilder.io/
• If you want to hear more: follow me:

http://twitter.com/erictune4

