

Bowei Du <bowei@>
Christopher M Luciano <cmluciano@>

Evolving the
Kubernetes Ingress
APIs to GA and
Beyond

Overview

• Current Ingress Usage
• Planned v1 enhancements
• v1 Timeline
• Ingress API Evolution (v2)
• Summary
• Questions

Current State of Ingress

• Provides basic k8s service backend mappings/rules and
related TLSconfig

• Majority of Ingress usage provided by off-the-shelf
controllers like ingress-nginx, HAProxy, etc.

• Current API is limited in scope to ensure massive
portability
• Side effect of many decorator annotations dangling off of

Ingress metadata

v1 API changes

Clean up the object model: IngressClass

Tweaks/fix to the specification:
● backend to defaultBackend
● Path-based prefixes/regex
● Hostname wildcards.

Add flexibility that will be hard to change later:
● Alternate backend types

backend -> defaultBackend

- Rename backend to defaultBackend
- Clarify use of this field as the explicit default

- Open PR k/k#80179

https://github.com/kubernetes/kubernetes/pull/80179

Path based prefixes & regex

● Current v1beta1 APIs assume that the path is a regex
specified with the POSIX IEEE 1003.1 standard
○ Does not match cloud-provider or nginx/haproxy today
○ kubernetes/ingress-nginx#555

● v1 goals
○ Explicitly state path match mode
○ Support existing implementation-specific variance
○ Portable prefix matching with options for future ideas

https://github.com/kubernetes/api/blob/release-1.14/networking/v1beta1/types.go#L170
https://www.boost.org/doc/libs/1_38_0/libs/regex/doc/html/boost_regex/syntax/basic_extended.html
https://github.com/kubernetes/ingress-nginx/issues/555

Path based prefixes & regex

PathType Examples

PathType Path Request path Match?
Exact /abc /abc Yes

Exact /abc /cba No

Prefix / any path Yes

Prefix /abc/ /abc Yes, trailing slash doesn’t
matter

Prefix /aaa/bbb /aaa/bbb/ccc Yes, subpath match

Prefix /aaa/bbb /aaa/bbbzzz No, no prefix match

Hostname wildcards

● Goal
○ *.foo.com matches app.foo.com

● Validation
○ * must appear as first DNS label

■ Single label
■ Cannot be Host == “*”

*.foo.com bar.foo.com Matches based on shared suffix

*.foo.com baz.bar.foo.com No match, wildcard only covers single
label

*.foo.com foo.com No match, wildcard only covers single
label

IngressClass

Current backend types

● Currently Ingress == L7 service sets
○ Only Kubernetes Services are valid

backends
● Goal

○ Support alternate backends like
storage buckets

Alternate backend types

● Existing Kubernetes Service types MUST
remain supported by implementations

● Custom services leverage new Resource field
by way of IngressClass

IngressBackend examples

Kubernetes Service Custom Resource

v1 API Timeline

● Kubernetes Release
○ v1.14

■ Ingress API in extensions/v1beta1 copied to networking.k8s.io/v1beta1
■ Mailing list announcement for Ingress extensions/v1beta1 deprecation

○ v1.15
■ Updated all documentation and k/k repo code for

networking.k8s.io/v1beta1
■ ingress-nginx v0.25.0
■ ingress-gce v1.7.0

○ v1.18
■ New networking.k8s.io/v1 APIs released
■ Mailing list deprecation warning of Ingress networking.k8s.io/v1beta1

deprecation

https://github.com/kubernetes/ingress-nginx/pull/4127
https://github.com/kubernetes/ingress-gce/issues/770

v1 API Timeline

● Kubernetes Release
○ v1.19

■ Update ingress-nginx/gce for v1 APIs
■ Remove ability to serve extensions/v1beta1

○ v1.2x ?
■ Remove ability to serve networking.k8s.io/v1beta1

Evolving Landscape

Cloud LBs
GCP,
AWS,
Azure,
...

Middle
Proxies

nginx,
envoy,

haproxy,
...

Transparent
“Proxies”
sidecars,

kube-proxy...

Early resources design were
“self-service” oriented:

● Few tenants
● Empowered dev owns whole

deployment

Now, we have:
● Multiple team/roles interactions
● Potentially multiple co-existing

implementations

Goals for the evolution

Provide a better model personas and roles
involved with services and load-balancing.

Support modern load-balancing features
while maintaining portability (or maybe
“predictability”)

Have standard mechanisms for extension for
API growth / implementation /
vendor-specific behaviors.

Status

Note: the API is in a proposal stage, so many things can
change (Your voice as a user is key part of this process!)

● Describe how goals map to API design
● Give a sense of the overall object model
● Highlight some interesting problems/approaches

Many open questions.

Goals for evolution

Provide a better model personas and roles
involved with services and load-balancing.

→ Resource model,
RBAC

Support modern load-balancing features
while maintaining portability (or maybe
“predictability”)

→
Levels of support,
specification and
conformance

Have standard mechanisms for extension for
API growth / implementation /
vendor-specific behaviors.

→ Resource model,
polymorphism

Personas and Roles

👷👷♀ Infrastructure

Provider

Provides the infrastructure for cluster creation, e.g. cloud

provider, internal PaaS team.

👨🔧👩🔧 Cluster Operator /

NetOps / SRE

Manages the cluster overall once its created. Responsible for

overall policies, e.g. which services expose to Internet.

👨💻👩💻 Application

Developer

Builds the services and applications and defines traffic routing,

services.

Modeling roles: Ingress

Ingress

Service

Ingress
Class

👷👷♀infrastructure

provider

👨💻👩💻 application

developer

Ingress is a self-service model.

IngressClass are created by
infrastructure provider

Application developer manages
Ingress + Service; Ingress limited to
simple L7 description.

👨🔧👩🔧 cluster operator

👷👷♀ infrastructure

provider

👨💻👩💻 application

developer

Modeling roles: Evolution

Gateway
Class

Gateway

*Route

Service

GatewayClass is created by the
infrastructure provider (kinds of LB
available)

Gateway is an instantiation of a
given LB.

*Route (HTTPRoute) and Services
are defined by the developer.

Gateway/Route schema

Gateway
Class

Gateway

Route Service

*
m

n

kind: GatewayClass
name: internet-lb

provider: acme.io/cloud
parameters:
 apiGroup: acme.io/cloud
 kind: Parameters
 name: ...

kind: GatewayClass
name: private-lb

provider: acme.io/cloud
parameters:
 apiGroup: acme.io/cloud
 kind: GatewayParameters
 name: ...

apiGroup: acme.io/cloud
kind: Parameters

public: true

apiGroup: acme.io/cloud
kind: Parameters

public: false

Gateway/Route schema

Gateway
Class

Gateway

Route Service

*
m

n

kind: GatewayClass
name: internet-lb
...

kind: Gateway
namespace: net-ops
name: the-gateway

class: internet-lb
listeners:
- port: 80

protocol: http
routes:
- kind: HTTPRoute

name: my-app

kind: HTTPRoute
name: my-app

rules:
- path: /my-app

...
gateways:
- namespace: net-ops

name: the-gateway

kind: Service
name: my-app

Roles and resources

kind: GatewayClass
name: internet-lb

kind: Gateway
name: my-public-app-1

kind: HTTPRoute
name: my-private-app

kind: Gateway
name: my-app

kind: HTTPRoute
name: my-app
kind: Service
name: app-backend

kind: HTTPRoute
name: my-app

Role: Infrastructure Provider Role: App developerRole: Cluster Operator / NetOps

Team role separation

Roles and resources

kind: GatewayClass
name: internet-lb

kind: GatewayClass
name: private-lb

kind: Gateway
name: my-public-app-1

kind: Gateway
name: my-private-app

kind: HTTPRoute
name: my-private-app

kind: HTTPRoute
name: private-service

kind: Gateway
name: my-app

kind: Gateway
name: private-service

kind: HTTPRoute
name: my-app
kind: Service
name: app-backend

kind: HTTPRoute
name: my-app
kind: Service
name: internal-svc

kind: HTTPRoute
name: my-app

Role: Infrastructure Provider Role: App developer

Role: Cluster Operator / NetOps

Self-service Gateway

Roles and resources

kind: GatewayClass
name: internet-lb

kind: GatewayClass
name: private-lb

kind: Gateway
name: my-public-app-1

kind: Gateway
name: my-private-app

kind: HTTPRoute
name: my-private-app

kind: HTTPRoute
name: private-service

kind: Gateway
name: my-app

kind: Gateway
name: private-service

kind: HTTPRoute
name: my-app
kind: Service
name: app-backend

kind: HTTPRoute
name: my-app
kind: Service
name: internal-svc

kind: HTTPRoute
name: my-app

Role: Infrastructure Provider

Role: App developer

Role: Cluster Operator / NetOps

kind: GatewayClass
name: in-cluster-ngx

kind: Gateway
name: my-private-app
kind: Gateway
name: my-private-app

kind: HTTPRoute
name: private-service

kind: Service
name: test-svc

Fully self-service

Design Challenges

● Varied deployment patterns
● Multiple cooperating resources + roles
● Portability
● Extensibility
● Status

Gateway Deployment Models

kind: GatewayClass
name: in-cluster-ngx

kind: HTTPRoute
name: private-service

kind: Service
name: test-svc

kind: Gateway
name: my-private-app

Controller then
… configures a cloud LB / Gateway

… instantiatiates a proxy instance in cluster / Gateway

… merges Gateways together into a configuration,

 reloads configuration.

Designing for RBAC

USER ROLE

VERB

RESOURCE

Alice can act as a Cluster Operator with

permission to Update the configuration

of a Gateway.

USER ROLE VERBRESOURCE

Designing for RBAC

Resource boundaries should be split based on
responsibilities.

However, “handshake” required between
Gateway/Route:

● Protect who can use a given Gateway (“no Internet for you”)
● Self-service attachment (Gateway ← Route)
● Some users want to control who can export a *Route.

Most natural modeling is explicit double-sided links.

Portability

Custom API

Extended API
100% portable IF supported

Core API
100% portable

Core
MUST be supported.

Extended
Feature by feature.
MAYBE supported, but
MUST be portable.
Part of API schema.

Custom
No guarantee for
portability, No k8s API
schema.

gravity...

Portability

Custom API

Extended API
100% portable IF supported

Core API
100% portable

Enforcement by conformance
tests.

Extended feature definition
requires self-contained
conformance.

Require all extended features be
checkable statically.

gravity...

Portability

Custom API

Extended API

Core API

Neato
Feature ®

Ingress
GA

Traffic
splitting

Regex? Rewrite

Extensions

Extensibility mechanisms:

annotations

vs map[string]string

vs Custom Resource (polymorphic links)

vs Raw Objects (inline JSON)

Status

Long neglected aspect of LB APIs

More complex due to multiple resource
composition/references.

Events : ephemeral (“something changed”)

vs Status (“current state”)

How to get involved

API sketch is here: link

Working group (coming soon, info will go out):
- Bi-weekly meetings
- SIG-NETWORK mailing list (link)
- Slack channel
- github.com/kubernetes-sigs/service-apis

Help wanted:
- Feedback on the proposal (users AND implementers)
- Experimental implementations

https://docs.google.com/document/d/1BxYbDovMwnEqe8lj8JwHo8YxHAt3oC7ezhlFsG_tyag/edit?ts=5dd42690
https://github.com/kubernetes/community/tree/master/sig-network
http://github.com/kubernetes-sigs/service-apis

Q&A

Who are we?

Christopher M Luciano
cmluciano@

Bowei Du
bowei@

