
Enforcing Service Mesh
Structure using Gatekeeper
Sandeep Parikh
@crcsmnky
Google Cloud

Hi, I’m Sandeep

I write code, best practices, and work with ops
teams to build and operate cloud native
infrastructure.

Find me @crcsmnky on Twitter and Github.

http://twitter.com/crcsmnky
http://github.com/crcsmnky

What are policies?

What are policies?
Rules that tell us whether we can

make changes to a resource

What is policy management?

What is policy management?
The practice of developing, deploying,

and using policy objects

How you store/control/govern
deployment configuration

Process for it (GitOps) and
for who can do it (RBAC)

Config management enforces
object/resource state

Policies govern the resource
changes that can be made

Allows enforcement over whether
changes can be applied

Policies can admit/deny/audit new
or existing cluster resources

vs.
Config

Management
Policy

Management

Guardrails & Governance

Kubernetes is powerful,
and needs controls

Controls need to
be flexible & agile

Watch for over-granted
privileges

Lock-down exposed services

Prevent data exfiltration

Limit scope to only what’s
necessary

Delegate access & control to
subject matter experts

Facilitate safe deploys and
continuous monitoring

How do you
enforce structure?

Open Policy Agent (OPA) is a

general-purpose policy engine

with uses ranging from

authorization and admission

control to data filtering.

Decouple policy decisions from

services to achieve unified control

across the entire stack.

Unified

Express policies in a high-level

declarative language that

promotes safe, fine-grained logic.

Declarative

Leverage arbitrary external data in

policies to ensure that important

requirements are enforced.

Context Aware

Open Policy Agent

When your software needs to

make policy decisions, it queries

OPA and supplies structured

data (JSON) as input.

Open Policy Agent
Service

Open Policy Agent

Policy
(Rego)

Data
(JSON)

Request, event, etc.

Query
(any JSON value)

Decision
(any JSON value)

OPA Gatekeeper provides

first-class integration between

OPA and Kubernetes via a

custom controller.

Gatekeeper turns Rego policies

into Kubernetes objects,

allowing them to be customized

and deployed using standard

workflows.

Gatekeeper kubectl CI/CD API clients

Kubernetes API Server

OPA Gatekeeper

AdmissionReview
(request)

AdmissionReview
(response)

Policies are written in Rego and

packaged as parameterized

ConstraintTemplate objects.

Policy Objects

apiVersion: templates.gatekeeper.sh/v1beta1
kind: ConstraintTemplate
metadata:
 name: destinationruletlsenabled
spec:
 crd:
 spec:
 names:
 kind: DestinationRuleTLSEnabled
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package asm.guardrails.destinationruletlsenabled

 # spec.trafficPolicy.tls.mode == DISABLE
 violation[{"msg": msg}] {
 d := input.review.object
 tlsdisable := { "tls": {"mode": "DISABLE"}}

 ktpl := "trafficPolicy"
 tpl := d.spec[ktpl][_]
 not tpl != tlsdisable["tls"]

 msg := sprintf("%v %v.%v mode == DISABLE",
 [d.kind, d.metadata.name, d.metadata.namespace])
 }

apiVersion: templates.gatekeeper.sh/v1beta1
kind: ConstraintTemplate
metadata:
 name: destinationruletlsenabled
spec:
 crd:
 spec:
 names:
 kind: DestinationRuleTLSEnabled
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package asm.guardrails.destinationruletlsenabled

 # spec.trafficPolicy.tls.mode == DISABLE
 violation[{"msg": msg}] {
 d := input.review.object
 tlsdisable := { "tls": {"mode": "DISABLE"}}

 ktpl := "trafficPolicy"
 tpl := d.spec[ktpl][_]
 not tpl != tlsdisable["tls"]

 msg := sprintf("%v %v.%v mode == DISABLE",
 [d.kind, d.metadata.name, d.metadata.namespace])
 }

Policies are written in Rego and

packaged as parameterized

ConstraintTemplate objects.

The ConstraintTemplate

extends Gatekeeper by adding a

new policy that can be invoked via a

new CR.

Policy Objects

Policy Objects

Constraints are instantiations of

a ConstraintTemplate CR and

can be optionally scoped to specific

objects and/or namespaces.

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: DestinationRuleTLSEnabled
metadata:
 name: dr-tls-enabled
spec:
 enforcementAction: deny
 match:
 kinds:
 - apiGroups: ["networking.istio.io"]
 kinds: ["DestinationRule"]
 namespaces: ["default"]
alternatively, scope by a selector
namespaceSelector:
matchExpressions:
- key: istio-injection
operator: In
values: ["enabled"]

Policy Objects

Constraints are instantiations of

a ConstraintTemplate CR and

can be optionally scoped to specific

objects and/or namespaces.

When violated, Constraints can

either deny admission or allow

entry, and audit the violation in the

status field.

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: DestinationRuleTLSEnabled
metadata:
 name: dr-tls-enabled
spec:
 enforcementAction: deny
 match:
 kinds:
 - apiGroups: ["networking.istio.io"]
 kinds: ["DestinationRule"]
 namespaces: ["default"]
alternatively, scope by a selector
namespaceSelector:
matchExpressions:
- key: istio-injection
operator: In
values: ["enabled"]

Gatekeeper Config

Existing cluster objects can be

synced into OPA Gatekeeper so

that they can be used for complex

multi-object policies or for

auditing existing resources.

apiVersion: config.gatekeeper.sh/v1alpha1
kind: Config
metadata:
 name: config
 namespace: gatekeeper-system
spec:
 sync:
 syncOnly:
 - group: ""
 version: "v1"
 kind: "Namespace"
 - group: ""
 version: "v1"
 kind: "Service"
 - group: "networking.istio.io"
 version: "v1alpha3"
 kind: "Gateway"
 - group: "networking.istio.io"
 version: "v1alpha3"
 kind: "VirtualService"
 - group: "networking.istio.io"
 version: "v1alpha3"
 kind: "DestinationRule"
 - group: "authentication.istio.io"
 version: "v1alpha1"
 kind: "Policy"

Applying enforcement
to Service Mesh

Why Service Mesh?

More services = more complexity

A service mesh provides a

transparent and language-

independent way to flexibly and

easily automate application

network functions.

What Istio provides

Uniform
observability

Policy driven
security

Operational
agility

What Istio does

Secure access and
communications

between some or all
services

Examine everything
happening with your
services with minimal

instrumentation

Traffic

Manage the flow of
traffic into, out of, and

within your complex
deployments

SecurityObservability

What Istio does

Secure access and
communications

between some or all
services

Examine everything
happening with your
services with minimal

instrumentation

Traffic

Manage the flow of
traffic into, out of, and

within your complex
deployments

SecurityObservability

Network automation at scale

Enmeshing
apiVersion: v1
kind: Service
metadata:
 name: app-backend
 labels:
 app: app-backend
spec:
 ports:
 - port: 5000
 name: backend-port
 selector:
 app: app-backend

In order for Pods and Services

to be part of the mesh, they

must use specific port-naming

conventions.

Enmeshing
apiVersion: v1
kind: Service
metadata:
 name: app-backend
 labels:
 app: app-backend
spec:
 ports:
 - port: 5000
 name: backend-port
 selector:
 app: app-backend

In order for Pods and Services

to be part of the mesh, they

must use specific port-naming

conventions.

How do you catch that in

advance?

Tell all services in a specific

Namespace to only accept mTLS

connections using Policy

objects.

Enforcing mTLS

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: default
spec:
 peers:
 - mtls: {}
 mode: STRICT

Tell all services in a specific

Namespace to only accept mTLS

connections using Policy

objects.

How do you prevent someone

from overriding that governance

on a per-host basis?

Enforcing mTLS

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: my-app-policy
spec:
 peers:
 - mtls: {}
 mode: PERMISSIVE
 targets:
 - name: app-backend

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: default
spec:
 peers:
 - mtls: {}
 mode: STRICT

app-backend will accept unauthenticated connections

Mismatched mTLS
apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: app-policy
spec:
 peers:
 - mtls: {}
 mode: STRICT
 targets:
 - name: app-backend

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: app-dest-rule
 namespace: default
spec:
 host: app-backend
 trafficPolicy:
 tls:
 mode: DISABLE

Tell services to only accept mTLS

connections using Policy

objects.

Tell clients to use mTLS

(if available) using

DestinationRule objects.

Mismatched mTLS
apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: app-policy
spec:
 peers:
 - mtls: {}
 mode: STRICT
 targets:
 - name: app-backend

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: app-dest-rule
 namespace: default
spec:
 host: app-backend
 trafficPolicy:
 tls:
 mode: DISABLE

Tell services to only accept mTLS

connections using Policy

objects.

Tell clients to use mTLS

(if available) using

DestinationRule objects.

What if they don’t match?

HTTP 503

Authz Controls

Istio’s ServiceRole and

ServiceRoleBinding objects

allow you to grant access to

specific services and methods

based on request, source, or

destination attributes.

apiVersion: rbac.istio.io/v1alpha1
kind: ServiceRole
metadata:
 name: authz-role
spec:
 rules:
 - services: ["backend.foo.svc.cluster.local"]
 methods: ["GET"]

apiVersion: rbac.istio.io/v1alpha1
kind: ServiceRoleBinding
metadata:
 name: authz-role-binding
spec:
 subjects:
 - properties:
 source.principal: "cluster.local/ns/bar/sa/frontend"
 source.namespace: "test"
 roleRef:
 kind: ServiceRole
 name: "authz-role"

Authz Controls
apiVersion: rbac.istio.io/v1alpha1
kind: ServiceRole
metadata:
 name: authz-role
spec:
 rules:
 - services: ["backend.foo.svc.cluster.local"]
 methods: ["GET"]

apiVersion: rbac.istio.io/v1alpha1
kind: ServiceRoleBinding
metadata:
 name: authz-role-binding
spec:
 subjects:
 - properties:
 source.principal: "cluster.local/ns/bar/sa/frontend"
 source.namespace: "test"
 roleRef:
 kind: ServiceRole
 name: "authz-role"

Istio’s ServiceRole and

ServiceRoleBinding objects

allow you to grant access to

specific services and methods

based on request, source, or

destination attributes.

How do we ensure that an authz

policy doesn’t allow access from

arbitrary sources?

VirtualServices

Assume you have a multi-tenant deployment with multiple

VirtualServices using the istio-ingressgateway.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: helloworld-v1
spec:
 hosts:
 - "*"
 gateways:
 - helloworld-gateway
 http:
 - match:
 - uri:
 exact: /hello
 route:
 - destination:
 host: helloworld-v1
 port:
 number: 5000

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: helloworld-v2
spec:
 hosts:
 - "*"
 gateways:
 - helloworld-gateway
 http:
 - match:
 - uri:
 exact: /hello
 route:
 - destination:
 host: helloworld-v2
 port:
 number: 5000

VirtualServices

Assume you have a multi-tenant deployment with multiple

VirtualServices using the istio-ingressgateway.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: helloworld-v1
spec:
 hosts:
 - "*"
 gateways:
 - helloworld-gateway
 http:
 - match:
 - uri:
 exact: /hello
 route:
 - destination:
 host: helloworld-v1
 port:
 number: 5000

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: helloworld-v2
spec:
 hosts:
 - "*"
 gateways:
 - helloworld-gateway
 http:
 - match:
 - uri:
 exact: /hello
 route:
 - destination:
 host: helloworld-v2
 port:
 number: 5000

!

Istio Policies

Gatekeeper allows you to enforce

any organizational, regulatory, or

compliance policies.

Require strict mTLS for all
clients/services in a namespace

Require access logging to be
enabled for a cluster / mesh

Require fine-grained service
authorization controls

Require services to disable
unauthorized access

Require annotations for mesh
objects to track ownership

Only allow whitelisted fields in
telemetry specifications

Gatekeeper + Istio = Structure

Demos

GKE 1.14.8-gke.2

Istio 1.3.3

Gatekeeper 3.0.4-beta.2
Audit Services for not using

correct port-naming convention
Prevent VirtualService hostname

matching collisions

Require strict mTLS for all
services in a namespace

Require services to disable
unauthorized access

Questions & Resources

Questions?

Find me

@crcsmnky on

Twitter or Github

Gatekeeper Policies for Istio
github.com/crcsmnky/gatekeeper-istio

Gatekeeper
github.com/open-policy-agent/gatekeeper

Rego
openpolicyagent.org/docs/latest/policy-language

https://twitter.com/crcsmnky
http://github.com/crcsmnky
http://github.com/crcsmnky/gatekeeper-istio
http://github.com/open-policy-agent/gatekeeper
http://openpolicyagent.org/docs/latest/policy-language

Thank you

