
Derek Collison, Colin Sullivan, Wally Quevedo,
and Jaime Piña

Agenda

✓ Overview of the NATS project

✓ New Features and Roadmap

✓ Demonstrations

NATS Overview

What is NATS?

NATS is a ten year old, production proven, cloud-native messaging
system made for developers and operators who want to spend more
time doing their work and less time worrying about how to do
messaging.

✓ DNA: Performance, simplicity, security, and availability

✓ Built from the ground up to be cloud native

✓ Multiple qualities of service

✓ Support for multiple communication patterns

✓ Over 30 client languages

CNCF Landscape

Joined CNCF as an

incubation project in

2018

https://landscape.cncf.io

https://landscape.cncf.io

Contribution Statistics

● Over 1000 contributors, over 100 with more than 10 commits

● 30+ public repos

○ 15,000+ GitHub stars across repos

● ~51M NATS Server Docker Hub pulls

● ~50M NATS Streaming Server pulls

● 1500+ Slack members

● 20+ releases of the NATS server since June 2014, ~= 5/year

https://nats.devstats.cncf.io/d/9/developers-summary

https://nats.devstats.cncf.io/d/9/developers-summary

History

Created by Derek Collison

Derek has been building messaging systems
and solutions > 25 yrs

Maintained by a highly experienced
messaging team

Engaged User Community

Derek Collison
Founder and CEO at Synadia

Founder and former CEO at Apcera
CTO, Chief Architect at VMware
Architected CloudFoundry
Technical Director at Google
SVP and Chief Architect at TIBCO

End Users

NATS Clients

Use Cases

● Cloud Messaging

✓ Services (microservices)

✓ Event/Data Streaming (observability, analytics)

✓ Command and Control

● IoT and Edge

✓ Telemetry / Sensor Data / Command and Control

● Augmenting or Replacing Legacy Messaging

Messaging Patterns

High Level Patterns

● Streams
✓ A flow of data
✓ Fan out

● Services
✓ Do some work and return a result
✓ Load balanced

Application Patterns

✓ Request/Reply

✓ Publish/Subscribe

✓ Load Balanced Queue Subscribers

Subjects
A subject is simply a string representing an interest in data.

● Simple subject: foo

● Hierarchically Tokenized: foo.bar

● Wildcard subscriptions

✓ foo.* matches foo.bar and foo.baz.

✓ foo.*.bar matches foo.a.bar and foo.b.bar.

✓ foo.> matches any of the above

✓ > matches everything in NATS

● Unique Subjects for 1:1 addressability

Wildcard Subscribers

● Given sensors publish messages to:
✓ sensors.data.us.ca.sandiego
✓ sensors.errors.us.ca.sandiego
✓ sensors.data.uk.eng.london
✓ sensors.errors.uk.eng.london

● Subscribe to:
✓ sensors.data.us.> → all US data
✓ sensors.data.uk.eng.london → data from London
✓ sensors.errors.> → errors worldwide
✓ sensors.*.uk.> → all errors and data in the UK

Request/Response (1:1)

NATS
Client NATS

Client

Response

Using unique reply subjects, clients can make requests
to services that respond only to the request, creating a
1 to 1 relationship.

Request

NATS
Client

Publish/Subscribe (1:N)

SUB foo

PUB foo
NATS
Client NATS

Client

SUB foo

NATS
Client

SUB foo

NATS will fan out published messages to all
interested subscribers.

NATS
Client

Load Balanced Queues

SUB foo

PUB foo
NATS
Client

NATS
Client

SUB foo

NATS
Client

SUB foo

When subscribers are grouped together in a named
queue group, NATS will randomly distribute
messages to the subscribers, allowing NATS to act as
a layer 7 load balancer for services.

SUB foo
workers

NATS
Client

Load Balanced Queues

SUB foo

PUB foo
NATS
Client NATS

Client

SUB foo

NATS
Client

SUB foo

Randomly
distributed

SUB foo
workers

NATS
Client

Load Balanced Queues

SUB foo

PUB foo
NATS
Client NATS

Client

SUB foo

NATS
Client

SUB foo

Randomly
distributed

SUB foo
workers

NATS
Client

Load Balanced Queues

SUB foo

PUB foo
NATS
Client NATS

Client

SUB foo

NATS
Client

SUB foo

Randomly
distributed

SUB foo
workers

NATS
Client

Wildcard Subscribers

SUB foo.*

PUB foo.bar
NATS
Client NATS

Client

SUB foo.bar

NATS
Client

SUB foo.baz

Publishing to foo.bar matches foo.bar (an exact
match) and foo.* (wildcard match). foo.baz does not
match, so messages will not be delivered to that
subscriber.

NATS
Client

Wildcard Subscribers

SUB foo.>

PUB foo.bar.baz
NATS
Client NATS

Client

SUB foo.*.baz

NATS
Client

SUB foo.*

foo.> matches foo.bar.baz because “>” represents any number
of tokens. foo.*.baz demonstrates subject matching anywhere
in the subject. Note that foo.* does not match foo.bar.baz
because the * signifies matching on only a single token.

Performance,
Scalability, and
Resilience

Performance

18 million messages per second with one server, one data stream.
Up to 80 million messages per second per server with multiple data
streams.

Performance Decisions

Performance is a part of every decision we make…

✓ Design for scale
✓ Careful analysis of the fastpath

Just as important is what NOT to implement…

✕ Exactly Once QoS
✕ Transactions
✕ Message Schemas
✕ Message Headers

Availability

The health and availability of the system as a whole is prioritized
over servicing any individual client or server…

✓ NATS server “selfish optimization”
→ Protects against Slow Consumers

✓ Full Mesh clustering of NATS servers

✓ Server and client connections self heal

 … this creates a NATS dial-tone, always on, always available.

Simplicity

● Single binary

● 7.8 MB docker image with no external dependencies

● “Text-based” protocol with just a handful of verbs

| PUB | SUB | UNSUB | CONNECT | INFO | MSG | -ERR | +OK | PING | PONG |

● Low Configuration

✓ Clients only need a url and credentials

✓ Servers auto-discover

✓ You can share configuration files amongst servers

● Simple and Straightforward API

Auto Discovery

● Auto-Discovery
✓ Automatically Exchange Server Topology
✓ Server ⇆ Server
✓ Server → Client

● No configuration updates
✓ Failover to auto-discovered servers

● Great for rolling upgrades

Delivery Modes

Delivery Modes

NATS supports two delivery modes:
● At most once (Core)

✓ No guarantee of delivery - messages can be lost - applications must detect
and handle lost messages

● At least once (NATS Streaming and JetStream)
✓ A message will always be delivered, but in certain cases may be delivered

more than once

✕ Exactly once is arguably unnecessary, always complex, and inevitably slow

Delivery Modes

Through NATS streaming and JetStream, NATS supports:

● At-least-once delivery
● Replay by time or sequence number
● Last/initial value caching
● Durable subscribers
● Rate matching per subscriber
● Memory, File, or Database storage
● High Availability through fault tolerant or clustered configurations
● Scale through partitioning

Deployment
Topologies

Topology Building Blocks

Server

Super Cluster

Cluster

Leaf Node

Standalone NATS Server

Multiple NATS servers routed
together acting as one component

A cluster of NATS clusters

Clients require no awareness of server topology beyond a connection URL.

A NATS server connected to a
cluster, but not part of it

Clusters

NATS
Client

NATS Server clusters are full mesh one
hop, and messages only traverse clusters
where there is interest.

NATS
Client

Clusters

NATS
Client

NATS
Client

Clusters

NATS
Client

NATS
Client

Clusters

NATS
Client

NATS
Client

Superclusters
Superclusters are clusters of clusters connected
together with gateway connections. They use a
spline based technology to ensure resiliency and
optimize traffic across clusters.

Cluster A
Cluster B

Gateway Connections

Superclusters

US-West

US-East

Asia-West

Multiple clusters can be linked together to
form vast network topologies that consider
WAN network links and latency.

Leaf Nodes

✓ A leaf nodes is a single NATS server connected to a cluster or
remote server.

✓ Leaf nodes extend clusters via a hub and spoke topology

✓ Leaf nodes allow you to bridge separate security domains.

✓ Ideal for edge computing, IoT hubs, or data centers that need to be
connected to a global, regional, or national NATS deployment.

✓ Transparently bridge on-premise and cloud deployments.

Hypothetical Global Deployment

Supercluster

Leaf Node
Leaf Node in a

Remote Cluster

Clients/Microservices/Devices

NATS Server

San Diego HQ
Cluster (k8s)

Berlin Cluster (VMs)

London Cluster
(k8s)

Geo Aware Queue
Subscribers

Geo Aware Queue Subscribers

US-West US-East

PUB
foo

NATS
Client

Queue
Subscriber

SUB foo

Queue
Subscriber

SUB foo

Geo Aware Queue Subscribers

US-West US-East

Queue
Subscriber

SUB foo

Queue
Subscriber

SUB foo

The local queue
subscriber will be

preferred

PUB
foo

NATS
Client

Geo Aware Queue Subscribers

US-West US-East

Queue
Subscriber

SUB foo

Queue
Subscriber

SUB foo The local queue
subscriber is

disconnected.

PUB
foo

NATS
Client

Geo Aware Queue Subscribers

US-West US-East

Queue
Subscriber

SUB foo

Queue
Subscriber

SUB foo The local queue
subscriber is
disconnected

The remote queue
subscriber takes over.

If there are multiple
regions, NATS will
choose the queue

subscriber with the
lowest RTT.

PUB
foo

NATS
Client

Geo Aware Queue Subscribers

US-West US-East

Queue
Subscriber

SUB foo

Queue
Subscriber

SUB foo When back online, the local queue
subscriber takes over as it is preferred.

PUB
foo

NATS
Client

Geo Aware Queue Subscribers

What does this mean for you?

You have disaster recovery with….

✓ Runtime scalability

✓ Zero configuration

✓ The best latency

Security

Basic Security

● Full TLS Support: CA certificates, bidirectional support, default

to most secure ciphers.
✓ Support for DN or SAN in certificates for NATS user identity

● Support for standard user/password auth

● Permissions restrict who can send and receive on what

subjects

● Change these through configuration reload at runtime with

zero downtime.

● Operator Mode with NATS >= 2.0

Operator Mode

Operator

Account BAccount A

User 1 User 2 User 1 User 2

Operator Mode

NATS allows you to define Operators, Accounts, and Users within a NATS

deployment.

● Operator: Root of trust for the system, e.g. An enterprise operator.

○ Create Accounts for account administrators. An account represents an

organization with a secure context within the NATS deployment, for

example a VAS system, an IT system monitoring group, a set of

microservices, etc. Account creation would likely be managed by a

central group.

● Accounts define limits and may securely expose services and streams

○ Account managers create Users with permissions

● Users have specific credentials and permissions.

Accounts

● Accounts are isolated communication contexts allowing secure

multi-tenancy

● Bifurcate technology from business driven use cases
✓ Data silos are created by design, not software limitations

● Easy, Secure and Cost Effective
✓ One NATS deployment for operators to manage
✓ Decentralized - organizations can self-manage

● Share data between accounts
✓ Secure Streams and Services
✓ Only mutual agreement will permit data flow

NKeys

Used by the NATS Identity authentication and authorization system.

● ED25519 based encoded keys made simple

✓ Fast and resistant to side-channel attacks

✓ Sign and Verify

● NATS servers never see private keys

✓ Server sends nonce during connect then verifies the nonce signed by the
user’s private key, and user JWT signed by an account private key.

● JWT associate users with accounts and permission sets

Operator Mode

JWTs are used to represent identities in NATS
● User, Account, Cluster, or Server

User JWTs Contain
● Account NKey (Issuer)
● Public NKey (Subject)
● Friendly Name
● Permissions, limits, not-before and expiration

Creating JWTs

The nsc CLI manages JWTs

● Create the operator, accounts, and users

● Create Import and Exports

● Set account limits

● Set user permissions

● Deploy Account JWTs

✓ Upload to the account server

✓ Create configuration files with embedded JWTs

Managing JWTs

● Servers specify a resolver
● Memory Resolver

✓ Embed JWTs in the server configuration

✓ Ideal for deployments that do not often create accounts

● Account Server
✓ Stores JWTs and servers will look them up as needed
✓ Supports mirroring for performance and backup
✓ Use when accounts are frequently created or expired

New Features

JetStream Tech Preview
We built JetStream to be the next-gen streaming system with the following goals:

The System Must
Be easy to configure and operate and
be observable

The System Must
Be secure and operate well
with NATS 2.0

The System Must
Scale horizontally and be applicable
to high ingestion rate

The System Must
Support multiple use cases

The System Must
Self heal and always be available

The System Must
Have an API that is closer to core
NATS

The System Must
Allow NATS messages to be part
of an NMS as desired

The System Must
Display payload agnostic behavior

The System Must Not
Have third party dependencies

JetStream Tech Preview

JetStream supports

✓ Data at rest encryption

✓ Cleanse specific messages (GDPR)

✓ Horizontal scalability

✓ Persist Message Sets and replay via
Observables

✓ At-least-once delivery

✓ Store messages and replay by time
or sequence

✓ Embedded NATS server subsystem
with an option to enable

✓ Wildcard Support

✓ NATS 2.0 Security

JetStream Sets and Observables

Message Sets are groups of persisted messages in JetStream that are

created by applications at runtime, and have various policies set per

unique message set.

Observables are application defined and control how message set

messages are consumed.

Message Sets or Observables do not need to be configured or

provisioned before use.

JetStream Message Sets

Message sets are defined by:

✓ Subjects (including wildcards)
✓ Retention Policy
✓ Limits
✓ Replica Count
✓ Storage Type

Applications create message sets by sending a specific JSON request.

The NATS clients will be extended to make this easy.

JetStream Message Set Retention

Message Sets support retention policies that determine when the

message set’s persisted data is rolled off. These include:

✓ Stream: Messages are retained until limits are reached

✓ Interest: Messages are retained until all observables, either durable or
ephemeral, have consumed a given message

✓ Work Queue: A message is retained until the first observable consumes
the message. These type of observables most likely form a pull based group
for a load balanced system.

JetStream Message Set Limits

Limits are applied to message sets to determine when to roll off
old data when applicable. These include:

✓ Max Messages: The number of messages the set will retain

✓ Max Bytes: The number of bytes the set will retain

✓ Max Age: The oldest message a message set will retain

JetStream Observable

Delivery Subject

Durable Name

Start Position
(Sequence or Time)

Start Type
(All or Last)

Ack Policy

Ack Wait

Subset

Replay Policy

An observable is defined by:

JetStream Observable Ack Policy

Ack policies dictate how an observable behaves when reading

messages and indirectly defines what a “lost” message means. These

policies also provide options to balance performance with quality of

service. Ack Policies include:

✓ None: Require no acks for delivered messages

✓ All: A message and all previous messages are ack’d.

✓ Explicit: Every message requires an ack or nack.

JetStream Observables Replay

Replay policies determine the rate of replay.

Replay policies include:
✓ Instant: Replay messages as fast as possible.

✓ Original: Replay messages with the same timing as arrival.

These allow users to accurately replay original data for testing and for

applications that need temporal message flow context.

JetStream and NATS Streaming

NATS Streaming will continue to be supported.
✓ 50 million docker downloads

✓ Deployed in production globally

✓ Bug fixes and Security fixes until June of 2022

Moving forward...
✓ New NATS enabled applications should prefer Jetstream

✓ We will provide a migration path to use JetStream

✓ New NATS streaming development will occur in JetStream

Distributed Tracing
OpenTracing reference implementations are provided for the java (not.java repo) and go (not.go repo). Using
a simple API, encode and decode NATS messages to be traced with Jaeger.

Integrations

We’re continuing to integrate NATS with other technologies.

● Spring.io

✓ NATS Spring Boot Starter

✓ NATS Cloud Stream Binder

● NATS Kafka Bridge

✓ Support for bridging to and from Kafka topics

● NATS MQSeries Bridge

✓ Support for bridging to and from IBM MQ series topics

Service Observability

Using the account usage import, operators can now monitor service

latency using the usage export.

NATS Surveyor

Surveyor can monitor your entire deployment from a single container

or process paired with Prometheus and Grafana.

✓ Provides a comprehensive view of entire NATS deployment

✓ No sidecars to deploy

✓ K8s, docker compose, or bare metal deployments

✓ Run using Docker Compose

✓ Requires NATS 2.0 Security and System Credentials

NATS Surveyor

Kubernetes Deployments

● A single command line to install (NATS v2 auth included)

✓ curl -sSL https://nats-io.github.io/k8s/setup.sh | sh

● Stateful Sets (used via installer)

✓ NATS Server / NATS Streaming Server official examples

✓ NATS Operator also changing to use StatefulSets internally

● Monitoring

✓ Surveyor Installation

https://nats-io.github.io/k8s/setup.sh

Extensive Documentation

https://docs.nats.io

https://docs.nats.io

Roadmap

Demos

Questions

Thank you!

