
Deep Linking Metrics
and Traces

with OpenTelemetry, OpenMetrics,
Prometheus and M3

San Diego, 2019-11-21
Rob Skillington

Who

Rob Skillington

CTO at Chronosphere
Previously M3 and M3DB technical lead at Uber
OpenMetrics Contributor

Let’s talk about

1. State of Monitoring: Logs, Metrics, Traces

2. Combining Logs, Metrics and Traces Today

3. Deep Linking Metrics and Traces

1 State of
Monitoring:
Logs,
Metrics,
Traces

Logs

Metrics

Metrics

Google trends of popular metrics formats

Metrics

2016 2017 2018 2019

~2,800 ~16,000 ~54,000 ~242,000

Numbers shared at PromCon 2019

Tracing

Tracing

A perspective on… Logs

A perspective on… Traces

A perspective on… Metrics

2 Combining
Logs, Metrics,
and Traces
Today

Increasingly, more Observability platforms providing two or more signals

(logs, metrics, traces)

Current integrations

Integrations - Taking a closer look

If you take a closer look at how jumping between metrics and traces is

today, they are generally linked by common set of labels and time window.

This narrows down search space in terms of time window and labels, but:

● Querying metrics with sum(...) or any other aggregation will drop tags

○ Context lost for jumping from metrics to traces

● Only “magical” when you store every trace

○ For a lot of users is prohibitively expensive.

● When sampling, the chances of having the right trace is low

○ Especially debugging edge cases - P99, or one error in a thousand.

Integrations - Taking a closer look

Wouldn’t it be nice if?

Go straight from the metric datapoint to one of the traces for a request

that comprised that exact datapoint.

3 Deep Linking
Metrics and
Traces

Demo

Jaeger Collector

Putting it altogether

App Open
Telemetry

Prometheus Metric & TraceID
Long Term

Storage (M3DB)

Trace + Span
Storage (Jaeger)

UI (Grafana /
Jaeger)

Open
Metrics

Jaeger Collector

What is OpenTelemetry?

App Open
Telemetry

Jaeger Collector

Metric & TraceID
Long Term

Storage (M3DB)

Trace + Span
Storage (Jaeger)

UI (Grafana /
Jaeger)

Open
Metrics

Prometheus

Capturing metrics
& traces

OpenTelemetry: Instrumentation SDK

jobsQueuedGauge := meter.NewFloat64Gauge("jobs_queued",

metric.WithDescription("The number of jobs currently queued"))

err := tracer.WithSpan(ctx, "jobEnqueue", func(ctx context.Context) error {

jobsTotal, err := jobQueue.Enqueue(job)

if err != nil {

return err

}

jobsQueuedGauge.Set(ctx, jobsTotal)

})

OpenTelemetry: Instrumentation SDK

jobsQueuedGauge := meter.NewFloat64Gauge("jobs_queued",

metric.WithDescription("The number of jobs currently queued"))

err := tracer.WithSpan(ctx, "jobEnqueue", func(ctx context.Context) error {

jobsTotal, err := jobQueue.Enqueue(job)

if err != nil {

return err

}

jobsQueuedGauge.Set(ctx, jobsTotal)

})

What is OpenMetrics?

App Open
Telemetry

Jaeger Collector

Metric & TraceID
Long Term

Storage (M3DB)

Trace + Span
Storage (Jaeger)

UI (Grafana /
Jaeger)

Open
Metrics

Prometheus

Propagating
metrics with

correlated trace ID

HELP http_requests_total http_requests

TYPE http_requests_total counter

http_requests_total{endpoint="/search",status_code="2xx"} 1725 # {trace_id="b096e71d..."} 1

http_requests_total{endpoint="/search",status_code="4xx"} 4 # {trace_id="944a6d97..."} 1

http_requests_total{endpoint="/search",status_code="5xx"} 27 # {trace_id="50785260..."} 1

http_request_latency_bucket{endpoint="/search",le="0.1"} 7 # {trace_id="7f78deda..."} 1

http_request_latency_bucket{endpoint="/search",le="0.2"} 7 # {trace_id="5ad53ac9..."} 1

http_request_latency_bucket{endpoint="/search",le="0.3"} 7 # {trace_id="c78493ec..."} 1

...

OpenMetrics: Extended Prometheus exposition

Putting it all together

App Open
Telemetry

Jaeger Collector

Metric & TraceID
Long Term

Storage (M3DB)

Trace + Span
Storage (Jaeger)

UI (Grafana /
Jaeger)

Open
Metrics

Prometheus

Prometheus scrapes the exemplar, keeps it locally in memory, then

remote writes it to M3.

M3DB stores the trace ID next to the metric timestamp and float value.

Prometheus and M3

Timestamp delta-delta bits Float64 value delta-XOR bits Exemplar bits Timestamp TSZ delta-delta bits Float64 M3TSZ value bits Exemplar bytesTimestamp TSZ delta-delta bits Float64 M3TSZ value bits Exemplar bytes

Single stored value bit-packed in TSDB column

When querying the data M3 query makes sure to keep at least one

representative exemplar per datapoint as part of the result (even after

applying sum(...), histogram_quantile(...), etc)

How do we query it?

Efficiency/Scalability?

App Open
Telemetry

Metrics backend

Open
Metrics

Trace backend

Possibly thousands, hundreds of thousands
requests in a given time window.
(e.g. 10s, 30s, 60s)

Single datapoint stored with a
single trace ID for error
counter value or latency
histogram bucket representing
thousands of requests.
(efficient)

Need to store all thousands of
traces to guarantee the trace
ID picked for datapoint exists.
(very inefficient & expensive)

Wouldn’t it be nice if?

200 Status Code 400 Status Code 500 Status Code

{trace: 024253eb-6be0-...}

{trace: 841e6da2-8694-...}

{trace: f7e33019-abc8-...}

{trace: 7b2a9954-e213-...}

{trace: d37ce450-a463-...}

{trace: b78fe85b-a508-...}

{trace: b10964a4-a4af-...}

{trace: 1cdfcb7a-1849-...}

{trace: 3bb247b2-89ec-...}

{trace: 2bce5524-905e-...}

{trace: a0eb52dc-8a3e-...}

{trace: f86aa034-b7c5-...}

{trace: 6aa9d08f-6632-...}

{trace: 1be7ef05-9985-...}

{trace: a22476ff-b177-...}

Using metric aggregation to determine sampled traces has many upsides:

● Aggregate across time to collect traces at useful time intervals.

● Metric tags are great at capturing all unique combinations. eg:

Error/Success, ErrorStatusCode, LatencyBucket.

○ This also ensures unique combinations of traces.

● Allows maintaining direct link between metric datapoint and trace ID.

Guaranteeing one representative trace stored?

Putting it altogether (again)

App Open
Telemetry

Prometheus Metric & TraceID
Long Term

Storage (M3DB)

Trace + Span
Storage (Jaeger)

UI (Grafana
/ Jaeger)

Open
Metrics

Jaeger
Collector

Trace Holding
Cache

Metric
Aggregation

(M3 Aggregator)

Where can I get this? (hint: upstream in progress)

Current end-to-end demo at:

https://github.com/chronosphereio/demo-deeplink-metrics-traces

Merged: Add exemplar support to OpenMetrics:

https://github.com/prometheus/prometheus/pull/6292

Open(needs discussion): Store exemplars in Prometheus memory, forward on remote write:

https://github.com/prometheus/prometheus/pull/6309

Open(helping review): OpenMetrics/Prometheus exporter PR for OpenTelemetry:

https://github.com/open-telemetry/opentelemetry-go/pull/334

https://github.com/chronosphereio/demo-deeplink-metrics-traces
https://github.com/prometheus/prometheus/pull/6292
https://github.com/prometheus/prometheus/pull/6309
https://github.com/open-telemetry/opentelemetry-go/pull/334

OpenMetrics https://github.com/OpenObservability/OpenMetrics

OpenTelemetry https://github.com/open-telemetry/opentelemetry-specification

Prometheus https://github.com/prometheus/prometheus

M3 https://github.com/m3db/m3

Grafana https://github.com/grafana/grafana

Talk demo https://github.com/chronosphereio/demo-deeplink-metrics-traces

Where can I get this?

https://github.com/OpenObservability/OpenMetrics
https://github.com/open-telemetry/opentelemetry-specification
https://github.com/prometheus/prometheus
https://github.com/m3db/m3
https://github.com/grafana/grafana
https://github.com/chronosphereio/demo-deeplink-metrics-traces

Come say hi! Booth SE62.

Thank you and Q&A

@roskilli http://bit.ly/m3slack

http://bit.ly/m3slack

