

Sanjeev Rampal Adrian Ludwin
Cisco Systems Google

Kubernetes Multitenancy
Working Group – Deep Dive

Where to find us

• Home page: https://github.com/kubernetes-sigs/multi-tenancy/

• https://github.com/kubernetes/community/tree/master/wg-
multitenancy

• Slack channel: Kubernetes Slack, #wg-multitenancy

• Google Group: https://groups.google.com/forum/#!forum/kubernetes-
wg-multitenancy
• Bi-weekly meeting (join google group for invite)
• Tuesday 11am Pacific Time

https://github.com/kubernetes-sigs/multi-tenancy/
https://github.com/kubernetes/community/tree/master/wg-multitenancy
https://groups.google.com/forum/

WG community

• Project leads
• @Adrian Ludwin

• Hierarchical Namespace Controller (“HNC,”)
• Software Engineer @ Google

• @Fei Guo
• Virtual Clusters, Tenant Controller
• Software Engineer @ Alibaba

• @Jim Bugwadia
• Multi-tenancy Benchmarks
• Founder & CEO at Nirmata

• Chairs
• @tasha
• Tasha Drew, Product Line Manager @ VMware
• @srampal
• Sanjeev Rampal, Principal Engineer @ Cisco

• Additional Project contributors
• Ryan Bezdicek

• Support and review across projects
• Many many more contributors across

the Working Group – Thank you!!

• Overview and Architecture
• What is Kubernetes Multitenancy ?
• Architectural models for Multitenancy

• Community initiatives: Multitenancy control plane
• Tenant controller & namespace grouping
• Hierarchical namespaces
• Virtual clusters

• Community initiatives: Data plane and benchmarking
• Benchmarking
• Data plane models

• Demo
• Q & A

Agenda

Overview & Architecture

• What is it ?
• Ability to share a Kubernetes cluster between multiple independent teams

• Why is it useful ?
• Improved resource efficiencies (esp when move to containers on BM)
• Reduced cluster sprawl
• Lower capex and opex for the cluster operator
• Resource usage burstability -> Higher application performance
• Essentially a bin-packing & statistical multiplexing problem

• Potential challenges
• Kubernetes not designed for Multitenancy at its core

• Unlike say Openstack, there are no core K8s resources for ”Users”, “Tenants”, “Projects”
• Wide spectrum of loosely defined scenarios and potential use case

• Defining “Standardization” vs best practice vs implementation choice

What is Kubernetes Multitenancy ?

The community feels this area needs work

• The New Stack poll (newstack.io November 2019)

• Categories of Multitenancy (high level use cases)

• “Soft” Multitenancy
• Ex. Multiple teams within the same enterprise sharing a K8S cluster

• “Hard” Multitenancy
• Ex. Service provider hosting multiple independent tenants on a shared cluster
• “Coke & Pepsi on the same K8s cluster”

• Other
• SaaS multitenancy

What is Kubernetes Multitenancy ? …

• Available solutions

1. Community Kubernetes + DIY solution using namespaces, network
policies etc

2. Vendor/ commercial distributions with features built on these
• E.g. Openshift “Projects”, Rancher “Projects”

3. Emerging community initiatives tracked within K8s Multitenancy
Working group & others

What is Kubernetes Multitenancy ? …

Architectural Models

VM VM VM

Hypervisor

k8s1 k8s2 k8s3

IaaS
ex. vSphere

k8s
cluster
mgmt

T1 T2 T3

BM BM BM BM

BM BMBMBM

ns1 ns2 ns3 ns-a ns-b ns-x ns-yK8S
T1 T2 T3

Super K8S

BM BM BM BM

k8s1 k8s2 k8s3

T1 T2 T3

BM BMBMBM

K8S T1 T2 T3

A

B

C

D

Architecture Options
Multitenancy
Architecture Model

Resource
efficiency

Level of
Tenant
isolation

Tenant/
application
Config
restrictions

All “Cloud
Native”
architecture

Architecture maturity &
production readiness

A: Multiple K8S
clusters on top of a
Virtualization IaaS

Low-
medium

High No No (multiple
separate
platforms,
orch.)

Medium-High

B: Namespace
grouping with
Tenant resources

High Medium-
High

Some
restrictions
eg cluster
scoped rescs.

Yes Medium

C: Virtual
Kubernetes Clusters

High High No (?) Yes Early

D: Core Kubernetes
change (Tenant as
1st class resource)

High High No (?) Yes (in
theory)

Very low (design does
not exist)

Mapping Tenants, Applications, Services

Tenant-1

Application-1

Namespace-1

S1 S2 S3

Tenant-1

Application-1

N1

S1 S2 S3

N2 N3

Tenant-1

Application-1

N1

S1 S2 S3

N2 Virtual
Cluster1

Application-2

S4

N3 N4 N5 N6
1 tenant <> 1 app <> 1 NS
(M micro-services all in 1 NS)
Need to resolve naming conflicts

1 tenant <> 1 app <> M NS
(1 service per NS)
Better service portability

1 tenant <> M apps <> mix of H-NSs & VCs

Tenant vs Application Security Responsibility Model

Tenant-A
resources

Tenant-B
resources

Cluster control
Plane resources
(k8s, monitoring etc)

Cluster and provider infrastructure resources

Application Security tools
e.g. Aqua

Community Initiatives: Multitenancy
Control Plane

Operational Model: Personas and workflows

Cluster-admin provisions K8S
cluster with 1 (of N)

recommended security profiles

Cluster-admin provisions
Tenant template and

Namespace template objects

Cluster-admin Tenant-admin Tenant-user

Tenant-admin provisions a
new tenant referring to

these templates

Tenant-admin provisions access
controls for the new tenant including
other admins & non-admin user RBAC

Tenant-user provisions
namespace scoped k8s
resources within tenant

Tenant-admin performs CRUD
operations and tenant life cycle

mgmt. on the tenant resource itself

Tenant Operator Model

• Self-service or Admin-
provisioned Tenants

• Each Tenant-CR manages a
collection of namespaces,
virtual clusters and associated
resources via corresponding
CRs that eventually own those
K8s resouces

• Named admins + named
resource RBAC

apiVersion: tenancy.x-k8s.io/v1alpha1
kind: Tenant
metadata:
labels:
controller-tools.k8s.io: "1.0"

name: tenant-t1
spec:
tenantAdminNamespaceName: t1-adm
requireNamespacePrefix: true
tenantAdmins:
- kind: ServiceAccount
name: t1-user1
namespace: default

apiVersion: tenancy.x-k8s.io/v1alpha1
kind: TenantNamespace
metadata:
labels:
controller-tools.k8s.io: "1.0"

name: tns-t1-n1
namespace: t1-adm

spec:
Add fields here
name: t1-adm-ns1

Sample config

Team NS

Hierarchical Namespace Controller

• Propagates policy objects from parents to
children
• Hardcoded list in v0.1 (Nov), aim to be

configurable in v0.3 (early 2020)

• Self-service subnamespaces
• No need for cluster-level privileges to create

subnamespaces

• Hierarchical authz checks
• “Subadmins” cannot deprive “superadmins”

of access

• Integrations via K8s labels
• Namespaces receive labels indicating the

subtrees they’re in.

Org NS

Service 1 NS Service 2 NS

SRE RBAC Network Policy

SRE RBAC Network Policy

Dev RBAC Team secrets

SRE RBAC Network Policy

Dev RBAC Team secrets

SRE RBAC Network Policy

Dev RBAC Team secrets

Original objects Propagated
objects

Hierarchical config

Hierarchical configHierarchical config

Virtual Kubernetes Clusters Model

Virtual Cluster Architecture Proposal; F Guo et al; Alibaba Cloud

Tenant Operator +
Virtual Cluster + HNC (optional)

Data plane and Benchmarking

Multitenancy Benchmarks

• Goals: validate whether multi-tenancy has been achieved, independently of how its configured

• Decouple how multi-tenancy is provisioned and managed from the desired state.

• Define the desired states for multi-tenancy
• Provide automated tests for validating the desired states

MT Profile Level Intent

Level 1 Uses K8s API objects; can be manually configured; limited tenancy features

Level 2 Level 1 + allow extensions for self-service DevOps i.e. namespace creation, etc.

Level 3 Level 2 + ability to create CRDs,etc. (virtual control plane)

• Categories:
1. Control Plane Isolation (CPI)
2. Tenant Isolation (TI)
3. Network Isolation (NI)
4. Host Isolation (HI)
5. Data Isolation (DI)
6. Fairness (FNS)
7. Self-Service Operations (OPS)

• Formatted similar to CIS benchmarks
• Test suite implemented using k8s e2e tests framework
• Open development model: community submits PRs for candidate benchmark

tests and implementations

Benchmark Categories & Formal Definition

• Profile Applicability:
• Level 1

• Type:
• Behavioral Check

• Category:
• Control Plane Isolation

• Description:
• Tenants should not be able to …

• Rationale:
• Tenants should not be able to access control

plane resources ...

Example: MTB-PL1-CC-CPI-1

• Audit:
• Run the following commands to retrieve

the list of non-namespaced resources:
• kubectl --kubeconfig cluster-admin api-

resources --namespaced=false For all non-
namespaced resources, and each verb
(get, list, create, update, patch, watch,
delete, and deletecollection) issue the
following commands:

• kubectl --kubeconfig tenant-a auth can-i
<verb> <resource> Each command must
return 'no'

Example Baseline Reference Implementation:

• Control Plane:
• Namespace Grouping Model (Tenant Operator based)

• Data Plane:
• containerD/ CRI-O runtime
• Container sandboxing

• Pod Security Policy (+Apparmor, Seccomp)
• Kata containers

• K8s Network Policy
• (CNI vendor specific) Global Network Policy

• Supported by Calico, Cisco ACI, Cilium, (others ?)

• Dynamic policy admission controller/ framework
• Open Policy Agent/ Gatekeeper/ Kyverno/ K-rail ..

Network Policy: Global Policy + K8s Policy
• Current K8s Network Policy is namespace scoped only non-ideal for Multi-tenancy
• Recommendation: Use a combo of K8s Network Policy + (CNI-specific) Global Network Policy
• Global Network Policy: Tool for Cluster Admin to isolate tenants
• K8s Network Policy: Developers, Devops use for micro-segmentation

Tenant-1 Tenant-2

Global nw policy rule
For tenant isolation

K8s nw policy rules for
App team microsegmentation

kind: GlobalNetworkPolicy

apiVersion: crd.projectcalico.org/v1
metadata:

name: isolate-tenant-1
spec:

types:

- Ingress
- Egress

Global Network Policy Calico v3.7 (demo only)
example
(ps. use Calico 3.10 namespaceselector for better rule options)

order: 10
ingress:
- action: Deny
source:
namespaceSelector: tenant != 't1'

destination:
namespaceSelector: tenant == 't1'

- action: Allow
egress:
- action: Deny
source:
namespaceSelector: tenant == 't1'

destination:
namespaceSelector: tenant != 't1'

- action: Allow

Profile 1: Basic
• Secure by default Kubernetes configuration

• Disable anonymous authentication
• Disable ABAC, disable local authorization,
• K8S secrets encryption enabled
• CIS Kubernetes benchmarks Level 2

requirements
• Enable RBAC
• Recommended default set of admission

controllers (NodeRestriction, AlwaysPullImages,
PodSecurityPolicy etc)

• Pod Admission controller (PodSecurityPolicy)
• CNI Container Network Policy enabled including

ingress and egress policies
• Docker run-time with Seccomp, AppArmor/

SELinux default profiles
• Best effort multi-tenancy for services

(monitoring, logging etc)

Sample Cluster Setup Reference Configurations
Profile 2:

• Profile 1 + additional required
enhancements including:

• Dynamic policy engine (e.g. OPA) based
enhancement for
• Access control/ RBAC
• Admission control (beyond Pod Security

policies)
• Advanced policy controls (e.g. ingress route

policies)

• Newer container runtimes & runtime
sandboxing options (CRI-O, containerD w/
Kata runtime, Firecracker/ gVisor)

• Complete solution for multi-tenancy across
monitoring, logging, storage, service mesh ..

• Tenancy across Multi-cluster, multi-cloud

Demo

