

GUO Jiannan (Jay), GUO Yingchun (Daisy)

IBM China

Cloud Native Smart Contract with Knative

Agenda
• Blockchain and Hyperledger Fabric
• Fabric Transaction Flow
• Current Smart Contract Lifecycle
• Improve with Tekton + Knative
• Demo
• Conclusion and Future Work

A Very Short Introduction to Blockchain

From technical perspective:
• Distributed System that tolerates Byzantine Faults (consensus)
• Verifiable Temper-proof Append Only Logs (chained blocks)
• Public or Consortium (permissionless or permissioned)

• Hyperledger is part of Linux Foundation with 270+ members
• Greenhouse for Enterprise Blockchain Technologies
• Fabric

• The first graduated project
• Apache 2.0
• Core written in Go
• SDK & Smart Contract in Go, Java, Node Premium Members

Screenshot from hyperledger.org 2019-11

Fabric Transaction Flow

• Tx <args, targeting contract>

TX<A, B, 10, f>

Fabric Transaction Flow

• Tx <args, targeting contract>
• fn(inputs)

TX<A, B, 10, f>
a = get_balance(A)
b = get_balance(B)
If a >= 10 then

a-=10, b+=10
else

return error

f(x)

Fabric Transaction Flow

• Tx <args, targeting contract>
• fn(inputs) produces ReadWriteSet

TX<A, B, 10, f> ReadSet <a, 100, v1> <b,100, v1>
WriteSet <a, 90, v2> <b, 110, v2>

a = get_balance(A)
b = get_balance(B)
If a >= 10 then

a-=10, b+=10
else

return error

f(x)

Fabric Transaction Flow

• Tx <args, targeting contract>
• fn(inputs) produces ReadWriteSet
• RWSets are accumated into blocks

TX<A, B, 10, f> ReadSet <a, 100, v1> <b,100, v1>
WriteSet <a, 90, v2> <b, 110, v2>

a = get_balance(A)
b = get_balance(B)
If a >= 10 then

a-=10, b+=10
else

return error

f(x)

Fabric Transaction Flow

• Tx <args, targeting contract>
• fn(inputs) produces ReadWriteSet
• RWSets are accumated into blocks
• Blocks are disseminated and agreed

upon via consensus protocol

TX<A, B, 10, f> ReadSet <a, 100, v1> <b,100, v1>
WriteSet <a, 90, v2> <b, 110, v2>

a = get_balance(A)
b = get_balance(B)
If a >= 10 then

a-=10, b+=10
else

return error

f(x)

Fabric Transaction Flow

• Tx <args, targeting contract>
• fn(inputs) produces ReadWriteSet
• RWSets are accumated into blocks
• Blocks are disseminated and agreed

upon via consensus protocol
• Block appended to the tail of chain

TX<A, B, 10, f> ReadSet <a, 100, v1> <b,100, v1>
WriteSet <a, 90, v2> <b, 110, v2>

a = get_balance(A)
b = get_balance(B)
If a >= 10 then

a-=10, b+=10
else

return error

f(x)

Fabric Transaction Flow

• Tx <args, targeting contract>
• fn(inputs) produces ReadWriteSet
• RWSets are accumated into blocks
• Blocks are disseminated and agreed

upon via consensus protocol
• Block appended to the tail of chain
• RWSets are validated and applied

against state of ledger

TX<A, B, 10, f> ReadSet <a, 100, v1> <b,100, v1>
WriteSet <a, 90, v2> <b, 110, v2>

a = get_balance(A)
b = get_balance(B)
If a >= 10 then

a-=10, b+=10
else

return error

f(x)

Fabric Transaction Flow

TX<A, B, 10, f> ReadSet <a, 100, v1> <b,100, v1>
WriteSet <a, 90, v2> <b, 110, v2>

a = get_balance(A)
b = get_balance(B)
If a >= 10 then

a-=10, b+=10
else

return error

f(x)

Many other blockchain projects reach consensus on INPUT,
and then execute smart contract to manipulate local ledger

Being able to reach consensus on OUTPUT brings
flexibility and complexity at the same time

INPUT OUTPUT

• Programs embedding business logics
• Deployed on blockchain nodes
• Executed on-demand with external inputs
• Side effects (modifying ledger data) or return value (transaction output)
• Stateless, light-weight, ephemeral, deterministic, composable

https://solidity.readthedocs.io/en/v0.5.12/introduction-to-smart-contracts.html

Solidity - Ethereum Golang - Hyperledger Fabric

Smart Contract in Blockchain

https://solidity.readthedocs.io/en/v0.5.12/introduction-to-smart-contracts.html

• Runs as a separate process
• Communicates with Fabric Peer via gRPC stream
• CRUD API

Smart Contract in Fabric

Fabric Smart Contract Lifecycle

P
• Install smart contract on a peer (class)

Fabric Smart Contract Lifecycle

P.tar
• Install smart contract on a peer (class)

• Upload tar

Fabric Smart Contract Lifecycle

P.tar Docker
Image

• Install smart contract on a peer (class)
• Upload tar
• Compile
• Build Docker image

Fabric Smart Contract Lifecycle

P.tar Docker
Image

Supply chain

Trading

Provenance

• Install smart contract on a peer (class)
• Upload tar
• Compile
• Build Docker image

• Instantiate smart contract on a channel (instance)

Fabric Smart Contract Lifecycle

P.tar Docker
Image

Docker
Container Supply chain

Trading

Provenance

• Install smart contract on a peer (class)
• Upload tar
• Compile
• Build Docker image

• Instantiate smart contract on a channel (instance)
• Start Docker container

Fabric Smart Contract Lifecycle

P.tar Docker
Image

Docker
Container Supply chain

Trading

Provenance

• Install smart contract on a peer (class)
• Upload tar
• Compile
• Build Docker image

• Instantiate smart contract on a channel (instance)
• Start Docker container
• Smart contract initiates gRPC connection with peer

Fabric Smart Contract Lifecycle

P.tar Docker
Image

Docker
Container Supply chain

Trading

Provenance

tx

• Install smart contract on a peer (class)
• Upload tar
• Compile
• Build Docker image

• Instantiate smart contract on a channel (instance)
• Start Docker container
• Smart contract initiates gRPC connection with peer

• Invoke smart contract (call)
• Tx is sent via gRPC stream

Problem with current model

P.tar Docker
Image

Docker
Container Supply chain

Trading

Provenance

tx

• Violate security practice by requiring a Docker
daemon exposed to Fabric Peer process

• Complexity in managing containers
• Hard to develop and test contracts
• Waste of resources by running idle contracts
• Co-location of Peer and contracts

Problem with current model

P.tar Docker
Image

Docker
Container Supply chain

Trading

Provenance

tx

• Violate security practice by requiring a Docker
daemon exposed to Fabric Peer process

• Complexity in managing containers
• Hard to develop and test contracts
• Waste of resources by running idle contracts
• Co-location of Peer and contracts

Deploy applications to multiple platforms like

serverless, virtual machines and Kubernetes

Build images with Kubernetes tools

Scale pipeline executions on-demand with

containers on Kubernetes

Standard Kubernetes-style pipelines
Declarative pipelines with standard Kubernetes

custom resources (CRDs) based on Tekton*

Run pipelines in containers

Use tools of your choice (source-to-image, buildah,

kaniko, jib, etc) for building container images

Deploy to multiple platforms

Run and manage pipelines with an interactive

command-line tool

Powerful command-line tool

Tekton Pipeline
The Tekton Pipelines project provides k8s-style
resources for declaring CI/CD-style pipelines. It
lets you build, test, and deploy across multiple
cloud providers or on-premises systems by
abstracting away the underlying implementation
details.

Tekton Trigger
Trigger is a Kubernetes Custom Resource Defintion
(CRD) controller that allows you to extract
information from events payloads (a "trigger") to
create Kubernetes resources.

Using triggers in conjunction with tekton pipeline
enables you to easily create full-fledged CI/CD
systems!

Tekton Pipeline Resources

Tekton Trigger Resources

Trigger, Build and Deploy with Tekton

Problem with current model

P.tar Docker
Image

Docker
Container Supply chain

Trading

Provenance

tx

• Violate security practice by requiring a Docker
daemon exposed to Fabric Peer process

• Complexity in managing containers
• Hard to develop and test contracts
• Waste of resources by running idle contracts
• Co-location of Peer and contracts

Knative

Define a set of primitives
to build modern, source-centric, and
container-based applications

Eventing ecosystem
enable late-binding event sources
and event consumers

Enable Serverless
define and control serverless
workload behaves on the cluster
Scale up from zero

Knative
Serving

Knative
Eventing

Based on Kubernetes
a set of Kubernetes Custom Resource
Definitions (CRDs)
scale automatically from zero and size
workloads based on demand

Leverage service mesh
defines routing and network
programming
observability and security

Knative Services

• Micro services / light weight
• Ephemeral
• Containerized
• Stateless
• Endpoint + load balance
• Scale to zero
• Auto scaling
• Pay by usage / resources saving
• Observable
• Secured access through mTLS

apiVersion: serving.knative.dev/v1alpha1
kind: Service
metadata:

name: contract
spec:

template:
spec:

containers:
- image: docker.io/daisyycguo/contract:0.1.7

ports:
- name: h2c

containerPort: 8080
env:

- name: CORE_CHAINCODE_ID_NAME
value: "my_prebuilt_chaincode"

Knative Service

Problem with current model

P.tar Docker
Image

Docker
Container Supply chain

Trading

Provenance

tx

• Violate security practice by requiring a Docker
daemon exposed to Fabric Peer process

• Complexity in managing containers
• Hard to develop and test contracts
• Waste of resources by running idle contracts
• Co-location of Peer and contracts

What did we do

Trigger

Tekton Pipeline

Task1
Source to Image

Task 2
Deploy to Knative

Ingress

Service

Endpoint

git tag

New Fabric Contract Lifecycle

Purl

Knative
Service Supply chain

Trading

Provenance

tx

“buildpack”

Detect

Build

Run

• Detect/Build/Run

• Install smart contract on a peer (class)
• Upload tar url
• Compile
• Build Docker image

• Instantiate smart contract on a channel (instance)
• Start Docker container
• Smart contract initiates gRPC connection with peer

• Invoke smart contract (call)
• Tx is sent via gRPC stream

Demo

1. Install smart contract as service url
2. Tag repo
3. Invoke smart contract
4. Modify code and re-tag repo
5. Invoke smart contract again

Steps:

Conclusion and Future Work

1.4 master

• Violate security practice by requiring a Docker
daemon exposed to Fabric Peer process

• Complexity in managing containers
• Hard to develop and test contracts
• Waste of resources by running idle contracts
• Co-location of Peer and contracts

• Detect/Build/Release/Run
• Contract is still long running

WIP

Offload lifecycle
management to
Tekton+Knative

Future

• 1 -> N

Question?

