
Kubeflow @ Spotify:
Building & Managing a Centralized Platform

Ryan Clough
Keshi Dai

Ryan Clough
@fnord2vec

Keshi Dai
@daikeshi

Agenda
● Introduction to Spotify

● Why Make a Centralized Platform?

● Optimizing Development with Centralized Resources

● Building a Kubeflow Platform

● Managing the Cluster

● Lessons Learned

Kubeflow is an open-source framework for

running ML pipelines on Kubernetes by

turning individual components of an ML

workflow into Docker containers.

Organizational
Structure
“Organizations which design systems ... are constrained to produce designs
which are copies of the communication structures of these organizations.”
- Conway’s Law

You

Your Squad

SQUAD GOALS

280+ Squads

Your Squad

280+ Squads

Your Squad

Example Team Structure

Backend Frontend ML Engineer Data ScientistData Engineer

● 5-8 people
● Cross-functional
● Responsibly Autonomous

Example Team Structure

Horizontal/Distributed Vertical/Centralized

Engineering Machine
LearningProduct

VP VPVP

Project 1 Project 2 Project 3

Management ManagementManagement

Engineers
ML Engineer,
Researcher,

etc

Design,
UX,
etc

PM PM PM

2x Data

1x Backend

2x ML

2x Frontend

2x Backend

1x Data

1x Backend

3x ML

2x Research

Autonomy & Decentralization

Pros:

Cons:

● Teams move faster
● Not blocked on other teams

● Lack of standardization
● Information/Experience silos

Centralization
VS

Self-Deployment

Pros: Self-Deployment

● Natural choice for autonomy

● Let teams decide

● No fighting over resources

Self-Deploy: Your Job?

● Make deployment easy

● Provide components

“The Best Engineers
Are Lazy”
 -Ancient Engineering Proverb

��

Cons: Self-Deployment

Cons: Self-Deployment
● Kubernetes expertise

Cons: Self-Deployment
● Kubernetes expertise

● Exacerbates information silos

Cons: Self-Deployment
● Kubernetes expertise

● Exacerbates information silos

● Upgrade issues

Cons: Self-Deployment
● Kubernetes expertise

● Exacerbates information silos

● Upgrade issues

● Technical limitation- Shared VPC

Shared VPC

Project 1

Service A

Service B

Shared VPC

Project 1 Project 2

Service A

Service B

Service C

Service D

Shared VPC

Project 1 Project 2

Service A

Service B

Service C

Service D

Shared VPC

Service A

Service B

Service C

Service D

Shared VPC

Project 1 Project 2

Shared VPC

● Major friction points:

○ Consultation with security

○ Blocks deployment on networking team

○ Limited IP resources

○ Special configuration for GKE

Pros: Centralization

● Shared VPC is solved once

● Centralization of Kubernetes expertise

● Teams focus on ML not infrastructure

● Easier adoption

● Centralized metadata

Cons: Centralization

● On call/SLOs

● Larger risk surface- upgrades, tenants

● Kubeflow is not yet fully Multi-tenant

Optimizing Pipeline
Development

Provide Common Components

● Based on TFX (Tensorflow Extended)

● Covers common tasks

● Access to existing systems (ex: data)

Build beyond Kubeflow

● Template repo

● Reduces boilerplate

● CLI tool

● Skaffold for automated Docker builds

● Make upgrades easier

Building
Kubeflow Cluster

Everything We Do
is on Google Cloud

Default Deployment
Google Deployment Manager creates GCP
resources
kfctl deploys jsonnet files

Terraform + ksonnet
Terraform creates GCP resources
kfctl deploys jsonnet files

Terraform + Kustomize
Terraform creates GCP resources
kfctl deploys Kustomize manifest files

Default Deployment
(May - June 2019)

Google Deployment Manager
creates GCP resources

kfctl deploys jsonnet files

Default Deployment
UI tool + deployment cli

UI Deployment Tool
If you are using Google Cloud, this tool works as a charm.

● GKE Cluster + Kubeflow Installation

● Google Cloud Endpoints

● Google IAP (Identity-Aware Proxy)

Things We Like

Really simple!

Problems
● Black box

● No customization

● No support for shared VPC

● No option to upgrade

Deployment CLI
Use kfctl to create a cluster and deploy kubeflow

● Kfctl generates config files

● Update GCP config for shared VPC

● Update pipelines to use Cloud SQL

and named PD

● Kfctl creates GCP resources and

installs Kubeflow apps

Problems
● Customization is manual

● Upgrade is still hard

● Replica is hard

● Can’t specify context in kfctl

Problems
● Customization is manual

● Upgrade is still hard

● Replica is hard

● Can’t specify context in kfctl

Terraform + ksonnet
Terraform is introduced to create GCP resources

Terraform + ksonnet
(June - September 2019)
Terraform creates GCP resources

kfctl deploys jsonnet files

What is Terraform
“Terraform is a tool for building, changing, and
versioning infrastructure safely and efficiently.”

Terraform for GCP Resources
● kfctl is no longer in charge of managing GCP resources

● Define the entire stack in a module

○ GKE cluster, shared VPC, dns, node pools, etc
○ Cloud SQL instance, PDs, DB users
○ Service accounts, k8s secrets, RBAC roles, etc

● Multiple instances based on the same module

Benefits of using Terraform
● Learn from existing examples (backend GKE clusters)

● Easily rebuild, modify, and track changes

● Easily replicate the entire kubeflow deployment

● Integrate with our git workflow

Ksonnet Deployment
● Kfctl generates Kubernetes resources only

● Parameterize the deployments for different envs

○ host name for ingress, Cloud SQL instance, PD

● Kfctl installs Kubeflow apps

Terraform + Kustomize
Since v0.6, Kubeflow has started using Kustomize for deployment

Terraform + Kustomize
(September 2019 - Present)

Terraform creates GCP resources
kfctl deploys Kustomize manifest files

Kustomize Deployment
● Kfctl generates Kustomize manifests

● Overlays for customized deployment

● kfctl apply deploys manifests

Ideal World
● Automatically track Kubeflow deployment changes

● Convert manifests generated by kfctl to our own

Kustomize layout

Ideal World
● Use gitops to deploy to multiple envs e.g. argo-cd

Managing
Kubeflow Cluster

User Access
● ~100 Spotifiers

● Two ways to interact with our cluster

○ Python SDK

○ Web UI

Secure Access
Provide secure access to our clusters

● Web UI access protected by Google IAP

● Python SDK access protected by

○ Google IAM (project viewer)

○ Kubernetes RBAC (more granular permissions on APIs)

Service Accounts
Manage service accounts for different teams

● Different teams using different GCP projects

● Store service accounts as k8s secret (not ideal)

● Switch to use workload identity (future)

● Use Velero to backup secrets hourly

Resource
Management
Strategy for managing workload resource on our platform
to meet requirements for various Machine Learning tasks

ML Job Resource Config
● Provide multiple node pools for different types of jobs

○ standard, high-memory, gpu

● Allow users to request custom resource

○ set resource request/limit in the pipeline job

Service Resource Config
Default resource config is not sufficient

● Isitio-policy, istio-telemetry

● Metrics server

Platform Usage Stats

●

●

Benefits of Centralized Platform
● More ML, less infra

● Shorter iteration cycles

● Faster time to production

● Better ML in our products

Lessons Learned

“Even with a handful of machine learning/data engineers, we
are successfully able to manage multiple Kubernetes clusters
and machine learning workloads at scale.”

- from our talk proposal submission

“Even with a handful of machine learning/data engineers, we
are successfully able to manage multiple Kubernetes clusters
and machine learning workloads at scale.”
- from our talk proposal

Not True

Lessons Learned
● Lean on k8s expertise of others: Spotify platform team

○ Steep learning curve
○ Networking, security, deployment, cluster management, etc

Lessons Learned
● Kubeflow is too big to chew all at once

○ Kubeflow Pipelines, Metadata, Istio, Kustomize, etc

○ Infra team takes the pain

Lessons Learned
● Nothing is small in terms of security

○ Initiate the conversation as early as possible

○ Keep them happy!

Thank You!

@fnord2vec @daikeshi

