KubeCon CloudNativeCon North America 2019

Building a Medical Al With Kubernetes and Kubeflow

Jeremie Vallee, Cloud Infrastructure Engineer, Babylon Health

KubeCon CloudNativeCon

North America 2019

Self-service Multi Region Multi Cloud

Research and Training Platform

We believe it is possible to put an accessible and affordable health service in the hands of every person on earth.

KubeCon

North America 2019

Accessibility

50% of the world population lacks access to essential health services, however 67% have access to mobile phones.

In 2014: Digital consultation with a doctor from your mobile phone.

Now: We've had 2+ million digital consultations in the world.

Affordability

How it started

Neural Networks

Compute

Hyperparameter Tuning

X Not enough compute

X Not enough orchestration

HP Tuning Orchestration

Hyperparameter Tuning with Katib

1600 CPU 3.2TB RAM

KubeCon

North America 2019

Challenges & motivation

Growing company

Increasing need for | compute access AI Research & Engineering tooling

Global footprint

Self-service Al Research & Training Platform

Let's talk about:

Networking

Monitoring

Multi Cluster

Kubernetes Infrastructure

Prepare for different workload types

Harden your nodes

Make Kubernetes API private

Encrypt your nodes (root volumes + others)

GitOps Bootstrapping

Source of Truth Auditing

Reduce human error

Networking

```
apiVersion: rbac.istio.io/v1alpha1
kind: ServiceRole
metadata:
  name: c-access-role
  namespace: default
spec:
  rules:
   - methods:
     - '*'
    paths:
     _ ***
    services:
     - c.default.svc.cluster.local
apiVersion: rbac.istio.io/v1alpha1
kind: ServiceRoleBinding
metadata:
  name: bind-a-to-c
  namespace: default
spec:
  roleRef:
    kind: ServiceRole
    name: c-access-role
  subjects:
  - user: cluster.local/ns/default/sa/a
```

Istio

Zero-trust policy

Mutual TLS

JWT check

Project Custom Resource

Goal:

- Isolate workloads
- Enable collaboration (multi-user)
- Provide shared volume per project
- Additional business logic and metadata

Solution:

- "Project" CRD and controller
- Integration with Kubeflow "Profile" CRD

Modular: install what you need Deployment: GitOps (Kustomize + Flux)

HP Tuning

Notebook Controller PYTÖRCH

Operators

90

Kubeflow + Istio + AuthN

Data and Secrets

Data

Control access to data via an auditable layer

Allow for data discoverability (with tools like **Amundsen**)

Secrets

Use a secret manager

Pods can authenticate to Vault and get secrets loaded in memory

LYR AMUNDSE	LYR AMUNDSEN V		
Q	Search all Lyft data	ALL V	
Popul	ar Tables		
	rides The main table for rides data in the Lyft database. This is the descripion then	MAR 24	
	passengers The global number of passengers in the Lyft system	APR 29	

Amundsen https://github.com/lyft/amundsen

Monitoring

Goal:

- Monitor projects for users
- Monitor cluster for MLOps
- Collect any metrics from jobs
- Automated dashboards

Lessons learned:

- Grafana Dashboards as ConfigMaps
- Allow users to submit dashboards via GitOps
- Multiple K8s clusters? Use Federation feature
- Need to scale up prometheus storage? Use Thanos

Monitoring cost

Keeping track of cost in a cloud environment is vital especially in AI/ML

Many proprietary options...

One of them open-sourced their cost model engine:

kubecost github.com/kubecost/cost-model

\$42

Self-service access to ML Toolkit CLI-based interface Monitoring On-demand compute Network RBAC, mTLS

Single cluster Slow on-boarding (GitOps) Complex Kubernetes objects

Global platform

Simplifying resources


```
"kind": "pod",
"name": "simple-gpu-example",
"image": "nvidia/cuda:8.0-cudnn5-runtime",
"command": ["python"],
"args": ["script.py"],
"resources": "gpu_medium"
```


KubeCon

North America 2019

apiVersion: v1 kind: Pod metadata: name: simple-gpu-example namespace: my-project spec: containers: - image: nvidia/cuda:8.0-cudnn5-runtime command: ["python" args: ["script.py"] name: simple-gpu-example resources: limits: memory: "16Gi" cpu: "8000m" nvidia.com/gpu: 1 name: "tensorflow" volumeMounts: - mountPath: /mnt name: efs-storage restartPolicy: "OnFailure" volumes: - name: efs-storage persistentVolumeClaim: claimName: efs imagePullSecrets: - name: my-deploy-pull-secret tolerations: key: "nvidia.com/gpu" operator: "Equal" value: "true" effect: "NoSchedule" nodeSelector: accelerator: nvidia-tesla-k80

API

Self-service access to ML Toolkit CLI and/or Web interface Monitoring **On-demand compute** Network RBAC, mTLS Multi region Fast on-boarding (UI or API) Simpler object definitions (heavy-lifting in the backend) Multi user

Use Case: Clinical Validation of our Symptom Checker

Symptom Checker: Bayesian network

Has two jobs:

1. Get as much relevant evidence from patient as possible 2. Find most likely disease based on evidence received

$P(D_i | E)$

Probability of Disease given Evidence

We want to evaluate how well it performs.

Use Case: Clinical Validation of our Symptom Checker

Clinical Validation:

- Simulating patient interaction via use cases generated by doctors
- Evaluating both questions asked by model and outcome
- Original duration: 10 hours (and lots of misery)

Thousands of use cases Managing use cases +

Assessing results

KubeCon

North America 2019

Serving Model

Use Case: Clinical Validation of our Symptom Checker

New duration: < 20 minutes Now running on every Pull Request

Improving feedback loop — faster iterations — increasing safety and quality of models

Code optimisation

Parallel API Deployment

Next steps

SELDON

Better serving

Improving user experience

Integrating Kubeflow Pipelines

Better Metadata Tracking

Sacred

Wrapping up

Kubeflow:

- Most complete ML toolkit for Kubernetes
- Great modularity
- Easy to get started

Security and compliance on K8s:

- Many open-source tools out there can help
- Have a look at the Cloud Native landscape and start from there

MLOps:

- Enabling AI/ML teams with tooling and infrastructure
- Always ask: what are the big pain points for your AI/ML teams?
- Focus on 1 pain point, build proof-of-concept, then add as feature

https://landscape.cncf.io/

a*ms?* s feature

Thank you! @jeremievallee jeremie-vallee We're hiring in UK and USA!

KubeCon CloudNativeCon

North America 2019

