
CNCF Telecom Users Group (TUG)
Cheryl Hung, Director of Ecosystem
Dan Kohn, Executive Director

© 2019 Cloud Native Computing Foundation2

CNCF Telecom User Group Meeting Times

• Twice-a-month calls
– First and third Mondays of the month at 08:00 PT
– https://github.com/cncf/cnf-testbed#meeting-time

• Mailing list
– telecom-user-group@lists.cncf.io

• Past kick-off meetings
– May 23 - KubeCon + CloudNativeCon Barcelona
– June 25 - KubeCon + CloudNativeCon China

https://github.com/cncf/cnf-testbed#meeting-time
mailto:telecom-user-group@lists.cncf.io
https://sched.co/MSzj
https://sched.co/OBhN

© 2019 Cloud Native Computing Foundation3

Cloud Native Computing Foundation
• Nonprofit, part of the Linux Foundation; founded Dec 2015

• Platinum members:

Incubating

Service Mesh

Storage

Service
Discovery

Graduated

Package
Management

Distributed Tracing
API

Messaging

Distributed
Tracing

Software Update
Spec

SecurityNetworking
API

Orchestration Network ProxyMonitoring

Registry Key/Value
Store

Policy Container
Runtime

Container
Runtime

Logging

Remote
Procedure Call

Key/Value
Store

Storage Serverless

© 2019 Cloud Native Computing Foundation4

KubeCon + CloudNativeCon + Open Networking Summit

• Linux Foundation Member Summit
– Lake Tahoe: March 10–12, 2020

• Mobile World Congress
– Barcelona: February 24-27, 2020

• KubeCon + CloudNativeCon Europe
– Amsterdam: March 30-April 2, 2020

https://events.linuxfoundation.org/lf-member-summit/
https://www.mwcbarcelona.com/
https://events.linuxfoundation.org/events/kubecon-cloudnativecon-europe-2020/

© 2019 Cloud Native Computing Foundation5

CNCF Telecom User Group (TUG)
• CNCF is launching the Telecom User Group (TUG) for operators and their

vendors who are using or aiming to use cloud native technologies in
their networks.

• The TUG will operate in a similar capacity to CNCF's End User Community
(since operators have never been included in CNCF's definition of end
users). Unlike the End User Community, telecom vendors are also
encouraged to participate in the TUG.

• The TUG is not expected to do software development, but may write up
requirements, best practices, gap analysis, or similar documents.

• We kicked off the TUG in a birds-of-a-feather (BoF) in Barcelona and
Shanghai and have moved to twice-a-month Zoom calls.

https://sched.co/MSzj
https://sched.co/OBhN
https://github.com/cncf/cnf-testbed#meeting-time

© 2019 Cloud Native Computing Foundation6

Efforts To Follow
• The TUG is not expected to develop code directly but will want to

closely follow upstream projects and may make recommendations
for operator use cases. Projects include:
– Kubernetes Federation v2 (KubeFed)
– Helm package manager and/or Kustomize plugin
– Envoy service proxy
– CNF Testbed
– Open Policy Agent
– Observability tools like Prometheus, Fluentd, Jaeger, and OpenTelemetry
– Service meshes like Linkerd and Istio (the latter is not a CNCF-hosted project)
– Network Service Mesh (sandbox project)
– Operators
– K8s IoT Edge Working Group
– Using Kubernetes as an Inventory Manager

https://github.com/kubernetes-sigs/federation-v2
https://helm.sh/
https://kustomize.io/
https://www.envoyproxy.io/
https://github.com/cncf/cnf-testbed
https://www.openpolicyagent.org/
https://prometheus.io/
https://www.fluentd.org/
https://www.jaegertracing.io/
https://opentracing.io/
https://linkerd.io/
https://istio.io/
https://networkservicemesh.io/
https://coreos.com/operators/
https://github.com/kubernetes/community/tree/master/wg-iot-edge
https://blog.newrelic.com/engineering/kube-apiserver-manage-inventory/

© 2019 Cloud Native Computing Foundation7

Initial Possible Work Items
• Gap analysis
• Connecting VNFs and CNFs using Multus, DANM, and/or Network Service

Mesh
• Cloud Native Telecoms Best Practices
• CNF Best Practices
• Demonstrating different approaches using the CNF Testbed

Overview

© 2019 Cloud Native Computing Foundation9

Evolving from VNFs to CNFs

VNFs ONAP Orchestrator

OpenStack or VMware

Bare Metal

Azure or
Rackspace

Past

VNFs

OpenStack

Bare Metal

Kubernetes

Present

CNFs ONAP
Orchestrator

Any Cloud Bare Metal Any Cloud

Future

VNFs
CNFs

ONAP
Orche-
strator

Kubernetes

KubeVirt/Virtlet
/OpenStack

OSS/
BSS

© 2019 Cloud Native Computing Foundation10

Kubernetes Architecture

“The entire system can now be described as an
unbounded number of independent asynchronous
control loops reading and writing from/to a
schematized resource store as the source of truth.
This model has proven to be very resilient,
evolvable, and extensible.”
- Brian Grant, co-chair, SIG-Architecture

https://twitter.com/bgrant0607/status/1111474959480549376?s=21

© 2019 Cloud Native Computing Foundation11

Evolution
• PNFs and VNFs are likely to be with us for at least another decade
• The only feasible approach for cloud native telecom is to offer an

evolution of PNFs and VNFs to become CNFs
• This mirrors how enterprises are moving their monoliths to Kubernetes and

then (often slowly) refactoring them into microservices
• For this to be economic, there need to be incremental gains in resiliency,

bin packing, and development velocity as more network functions
become cloud native

CNF Best Practices Ideas

© 2019 Cloud Native Computing Foundation13

Bronze CNFs
• Consider a physical firewall device that was ported to a VM to

become a VNF, but with no other changes
• When that firewall VNF is ported to become a Cloud native

Network Function (CNF), it can no longer carry custom kernel
patches or kernel modules and must be compatible with any kernel
version 3.10 or higher (the minimum to run Docker)

• This is a “lift-and-shift”
• But it can still include a number of sub-optimal patterns such as:

– Continued reliance on proprietary management interface
– Requires stateful storage and writes using a proprietary opaque format
– No support for horizontal scalability (i.e., multiple instances)
– No support for ConfigMaps and environment variables
– Proprietary installer rather than offering a Helm chart

© 2019 Cloud Native Computing Foundation14

Gold CNFs
• We would like to work with operators and their vendors to define a set of best

practices around CNFs, which we could call gold CNFs. These might include:
– Compatible: They should work with any Certified Kubernetes product and any

CNI-compatible network that meet their functionality requirements
– Stateless: State should be stored in a Custom Resource Definition or a separate database

rather than requiring local storage
– Security: Run unprivileged
– Scaling: It should support horizontal scaling (across multiple machines) and vertical scaling

(between sizes of machines)
– Configuration and Lifecycle: via ConfigMaps, Operators, or other declarative interface
– Observability:

• Monitoring: All performance metrics previously available via a proprietary interface should
be shared via an OpenMetrics interface that Prometheus and other monitoring tools can use

• Tracing: Support OpenTelemetry-compatible tracing
• Logging: Support Fluentd-compatible logging

– Installable and Upgradeable: Such as via a Helm chart and/or Kustomize plugin
– Hardware support: Via device plugin

https://www.cncf.io/certification/software-conformance/
https://coreos.com/operators/
https://openmetrics.io/
https://opentracing.io/
https://www.fluentd.org/
https://helm.sh/
https://kustomize.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/

© 2019 Cloud Native Computing Foundation15

CNF Best Practices
• CNCF could offer a self-testing platform to demonstrate conformance

with best practices
• Bronze CNFs likely have relatively few, if any, benefits over VNFs
• Gold CNFs will often require a complete re-architecture and so may not

be immediately available
• That would mean that the definition of a silver CNF may be critical
• Operators may write into request for proposals (RFPs) a requirement for

silver CNFs and/or specific aspects of gold

Cloud Native and Telecom

© 2019 Cloud Native Computing Foundation17

Networking
• Kubernetes already offers a myriad of options for networking and with the

adoption of Network Service Mesh as a CNCF sandbox project, is poised
to support nearly all other use cases

• The CNCF-hosted project Container Network Interface (CNI) supports
over a dozen networking technologies, including Multus and DANM,
which has seen use in operator applications

• Network Service Mesh (a new sandbox project) flexibly creates layer 2 or
3 network endpoints (“virtual tunnels”) similarly to how Envoy/Istio work
with TCP and HTTP
– It requires no changes to upstream Kubernetes and implements cluster functionality

as a Custom Resource Definition (CRD)
– It supports a number of operator use cases such as bridging VPNs, high performance

vSwitch, and connecting to PNFs
• Kubernetes supports IPv6 with dual-stack support coming this summer

https://networkservicemesh.io/docs/concepts/what-is-nsm/
https://github.com/containernetworking/cni#3rd-party-plugins
https://github.com/intel/multus-cni
https://github.com/nokia/danm
https://thenewstack.io/kubernetes-warms-up-to-ipv6/
https://github.com/lachie83/enhancements/blob/e37f7e830ac7251dedc8a99b502ad2aaaa75f72d/keps/sig-network/20180612-ipv4-ipv6-dual-stack.md

© 2019 Cloud Native Computing Foundation18

Security
• Like all systems, Kubernetes needs to be configured appropriately to

provide the necessary security
• High-security applications are running on Kubernetes in enterprises

around the world, including applications meeting PCI Level 1, HIPAA, and
ISO-27001

• Documenting best practices:
– Containers enable passive patching and a better model for supply

chain security
– Security best practices (and more) including RBAC and namespaces
– What Kubernetes Does and Doesn’t do for Security
– Disallow containers running as root

https://www.infoq.com/news/2019/04/kubernetes-pci-dss-compliance
https://blog.heptio.com/heptio-kubecon-recap-hybrid-cloud-hipaa-compliant-enterprise-with-steve-sloka-d9b2ab70e603
https://cloud.google.com/blog/products/identity-security/exploring-container-security-how-dronedeploy-achieved-iso-27001-certification-on-gke
https://cloud.google.com/blog/products/containers-kubernetes/exploring-container-security-how-containers-enable-passive-patching-and-a-better-model-for-supply-chain-security
https://www.cncf.io/blog/2019/01/14/9-kubernetes-security-best-practices-everyone-must-follow/
https://kubernetes.io/blog/2018/07/18/11-ways-not-to-get-hacked/
https://www.cncf.io/blog/2019/04/29/what-kubernetes-does-and-doesnt-do-for-security/
https://opensource.com/article/18/3/just-say-no-root-containers

© 2019 Cloud Native Computing Foundation19

Combating FUD Around MicroVMs
• There has been a lot of Fear, Uncertainty, and Doubt (FUD)

about the value of MicroVMs and similar sandbox technology
• Micro virtual machine and sandbox technologies – including

Firecracker, gVisor, Kata, Nabla, Singularity, and Unik – are
promising options to run untrusted code securely on a cluster

• MicroVMs are not necessary to address the noisy neighbor
issue; that’s what the core Kubernetes features resource limits
(for CPU and memory) and QoS (for networking) are for

• More generally, operators are running their own (1st party)
code or trusted vendor (2nd party) code, not untrusted 3rd
party code

https://landscape.cncf.io/category=container-runtime&format=card-mode&grouping=category&sort=stars
https://firecracker-microvm.github.io/
https://github.com/google/gvisor
https://katacontainers.io/
https://nabla-containers.github.io/
https://github.com/sylabs/singularity
https://github.com/solo-io/unik
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/

CNF Testbed

© 2019 Cloud Native Computing Foundation21

CNF Testbed

BARE-METAL
SERVER

BARE-METAL
SERVER

HARDWARE

NETWORK FUNCTIONS

OPENSTACK

VIRTUAL
MACHINES

VM

#includ
e

#includ
e

KUBERNETES

CONTAINERS

• Open source initiative from CNCF
• Collaborating with CNCF Telecom User

Group
• Testing and reviewing emerging cloud

native technologies in the Telecom domain
• Funneling the new technology to early

adopters
• Providing fully reproducible use cases and

examples
• Running on top of on-demand hardware

from the bare metal hosting company,
Packet

https://github.com/cncf/cnf-testbed
https://www.packet.com/cnf

© 2019 Cloud Native Computing Foundation22

CNF Testbed Contributors

Dan Kohn
@dankohn

Ed Warnicke
@edwarnicke

Taylor
Carpenter
@taylor

Denver
Williams
@denverwilliams

W.Watson
@wavell

Lucina
Stricko
@lixuna

Michael S.
Pedersen
@michaels
pedersen

Robert
Starmer
@robertstarmer

Peter Mikus
@rpmikus

Maciek
Konstantynowicz
@maciekatbgpnu

Nikolay
Nikolaev
@nickolaev

Fred Sharp
@linkous8

© 2019 Cloud Native Computing Foundation23

CNF Testbed Contributors

© 2019 Cloud Native Computing Foundation24

We Welcome Your Participation

● Replicate our results from github.com/cncf/cnf-testbed with an API
key from packet.com/cnf

● Package your internal network functions in containers (ideally
following cloud native principles) and run on your instance of the
testbed
● We don’t need to see the code but would love to see the results

● Create pull requests to have the CNF Testbed run on your bare
metal servers or other cloud bare metal servers like AWS i3.metal

https://github.com/cncf/cnf-testbed
https://www.packet.com/cnf
https://aws.amazon.com/about-aws/whats-new/2018/05/announcing-general-availability-of-amazon-ec2-bare-metal-instances/

© 2019 Cloud Native Computing Foundation25

Contribute Use Cases and Enhancements

• Contribute new use cases to the CNF Testbed (issues or spec board)

• Create pull requests to improve Kubernetes or OpenStack
deployments

https://github.com/cncf/cnf-testbed/issues
https://github.com/cncf/cnf-testbed/projects/26

© 2019 Cloud Native Computing Foundation26

Get Connected with the CNF Testbed

• Join the #cnf-testbed channel on CNCF slack
– slack.cncf.io

• Subscribe to the CNCF Telecom User Group mailing list:
– telecom-user-group@lists.cncf.io

• Attend CNCF Telecom User Group meetings:
– https://github.com/cncf/telecom-user-group
– 1st Mondays at 5pm CET / 8am Pacific Time (US & Canada)
– 3rd Mondays at 1pm CET / 7pm China Standard Time

http://slack.cncf.io
mailto:telecom-user-group@lists.cncf.io
https://github.com/cncf/telecom-user-group

Review & Roadmap

© 2019 Cloud Native Computing Foundation28

Review of CNF Testbed v1 - It Begins

• Initiative started at ONS NA 2018 in Los Angeles
– Apples-to-apples comparison of CNFs and VNFs
– What can we re-use from ONAP and other projects?
– What gaps are missing on the path to cloud native?
– What is a POC to assist with discussions?

© 2019 Cloud Native Computing Foundation29

ONAP Demo to Ansible-based v1 CNF Testbed

• Started with onap-demo
• Pivot to building blocks: Docker + Vagrant first
• Next: OpenStack and K8s workload platforms
• VPP based vSwitch for both platforms
• Ansible for additional hardware, host and network provisioning
• Custom use cases with Ansible, scripts and HEAT templates

https://github.com/onap/demo

© 2019 Cloud Native Computing Foundation30

General Goals - Technology Innovation Review Tool

• Support changing and trying different technology options
• Keep things as simple as reasonable
• Use upstream community tooling
• Use cloud native principles where possible

© 2019 Cloud Native Computing Foundation31

Use Cloud Native Principles

• Where possible use cloud native principles for all levels (hardware
to use case)
– Immutable hardware
– Version control all configuration including underlay

networking
– Workload bootstrapping repeatable by automation/pipeline

• Highlight where gaps are missing and out-of-band procedures
are used

• Bring focus to technology which is attempting to provide
solutions to meet cloud native principles

© 2019 Cloud Native Computing Foundation32

Key Features of CNF Testbed v2

• Using more in-band components
– refactor using Helm or kubectl for K8s use cases
– replace cross-cloud provisioner with Terraform + Kubespray
– more K8s-native replacements for out-of-band host setup

• Adding support for emerging technology including NSM, DANM,
SRIOV device plugins

• Adding new examples:
– SR-IOV
– Hybrid K8s + OpenStack service chains
– workload configs (eg. Nokia CPU Pooler + NSM)

© 2019 Cloud Native Computing Foundation33

CNF Testbed Roadmap | Nov 2019 to Jan 2020

Nov
2019

❏ Clients using different external gateways
❏ NSM SR-IOV Use Case
❏ Separate hardware and workload provisioning stages +

Kubespray for K8s

NSMCon, KubeCon
NA (Nov 18-21)

Dec
2019

❏ DANM SR-IOV use case
❏ NSM multi-cluster IPsec use case
❏ Multus + CPU Manager use case

[TBD]

Jan
2020

❏ NSM 5G use case
❏ NSM Hybrid K8s+Openstack use case
❏ Kolla/Openstack-helm (TBD)

[TBD]

https://github.com/cncf/cnf-testbed/issues/303
https://github.com/cncf/cnf-testbed/milestone/41
https://github.com/cncf/cnf-testbed/milestone/39
https://github.com/cncf/cnf-testbed/milestone/39
https://networkservicemesh.io/events/nsmcon2019
https://events.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2019/
https://events.linuxfoundation.org/events/kubecon-cloudnativecon-north-america-2019/
https://github.com/cncf/cnf-testbed/milestone/36
https://github.com/cncf/cnf-testbed/milestone/42
https://github.com/cncf/cnf-testbed/milestone/40
https://github.com/cncf/cnf-testbed/milestone/37
https://github.com/cncf/cnf-testbed/milestone/43

Overview of Components and Stages

© 2019 Cloud Native Computing Foundation35

Components of the CNF Testbed

• Hardware provisioning
• Workload provisioning (eg. K8s, OpenStack, SRIOV, VLANs)
• Use Cases and Examples
• Network Functions (eg. Packet Filter, NIC Gateway)
• Testing tools (eg. NFVbench)

© 2019 Cloud Native Computing Foundation36

CNF Testbed Software Components

DPDK

TRex

NFVbench

Kernel 4.4.0-134 DPDK memif
VPP vSwitchQEMU/KVM
VPP Neutron Agent

VPP IP Router

Kernel 4.4.0-134 DPDK memif
VPP vSwitchK8s v1.12.2

VPP IP Router

VPP IP Router

Ubuntu 18.04 LTSUbuntu 18.04 LTS
VPP IP Router

VPP IP Router

VPP IP Router

vhost-user

Kernel 4.4.0-134

Docker

Ubuntu 18.04 LTS

Kernel 4.4.0-134

K8s v1.12.2

Kernel 4.4.0-134

OS “rocky” services
Neutron, API etcd

OpenStack compute

OpenStack controller

Kubernetes worker

Kubernetes master

Traffic generator

https://www.dpdk.org/
https://github.com/cisco-system-traffic-generator/trex-core
https://gerrit.opnfv.org/gerrit/gitweb?p=nfvbench.git;a=summary

CNF Testbed Appendix

© 2019 Cloud Native Computing Foundation38

Combating FUD Around MicroVMs
• There has been a lot of Fear, Uncertainty, and Doubt (FUD)

about the value of MicroVMs and similar sandbox technology
• Micro virtual machine and sandbox technologies – including

Firecracker, gVisor, Kata, Nabla, Singularity, and Unik – are
promising options to run untrusted code securely on a cluster

• MicroVMs are not necessary to address the noisy neighbor
issue; that’s what the core Kubernetes features resource limits
(for CPU and memory) and QoS (for networking) are for

• More generally, operators are running their own (1st party)
code or trusted vendor (2nd party) code, not untrusted 3rd
party code

https://landscape.cncf.io/category=container-runtime&format=card-mode&grouping=category&sort=stars
https://firecracker-microvm.github.io/
https://github.com/google/gvisor
https://katacontainers.io/
https://nabla-containers.github.io/
https://github.com/sylabs/singularity
https://github.com/solo-io/unik
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/

© 2019 Cloud Native Computing Foundation39

Network Labs (pets) vs. Repeatable Testbed (cattle)

• Networking equipment used to be separate hardware
boxes that needed to be integrated in a lab for testing

• Most network labs today are still a group of carefully
tended pets whose results cannot be reliably
reproduced

• Modern networking is mainly done in software which
can and should be checked into source control and
replicated at any time

• Network servers should be treated like cattle, not pets

© 2019 Cloud Native Computing Foundation40

The Importance of a Repeatable Testbed
• A key driver of the Kubernetes project’s robustness has

been the significant investment in continuous integration
(CI) resources
– Every pull request runs a large automated test suite
– On any given weekday, we run 10,000 CI jobs
– Every 2 days, we run a new scalability test of 150,000 containers

across 5,000 virtual machines
– Google provided CNCF a $9 M grant of cloud credits to cover 3

years of testing
• The CNF Testbed is a completely replicable platform for

doing apples-to-apples networking comparisons of CNFs
and VNFs

https://kubernetes.io/blog/2018/08/29/the-machines-can-do-the-work-a-story-of-kubernetes-testing-ci-and-automating-the-contributor-experience/
http://velodrome.k8s.io/dashboard/db/bigquery-metrics?panelId=10&fullscreen&orgId=1&from=now-6M&to=now
https://siliconangle.com/2018/08/29/google-opens-cloud-services-kubernetes-project-9m-grant/
https://cloud.google.com/blog/products/gcp/google-cloud-grants-9m-in-credits-for-the-operation-of-the-kubernetes-project

© 2019 Cloud Native Computing Foundation41

Three Major Benefits

1. Cost savings
2. Improved resiliency (to failures of individual CNFs,

machines, and even data centers)
3. Higher development velocity

© 2019 Cloud Native Computing Foundation42

Server Specifications: compute/worker nodes

Packet’s M2.xlarge (currently available)
• CPU: 2 x Intel® Xeon® Gold 5120 Processor (28 physical cores)
• RAM: 384 GB of DDR4 ECC RAM
• Storage: 3.2 TB of NVMe Flash and 2 × 120 GB SSD
• NIC: 10GB dual-port Mellanox ConnectX-4

Packet’s N2.xlarge (available March 2019)
• CPU: 2 x Intel® Xeon® Gold 5120 Processors (28 physical cores)
• Same RAM and storage as the M2-xlarge
• NIC: 10GB quad-port Intel X710

https://www.packet.com/cloud/servers/m2-xlarge/
https://www.packet.com/cloud/servers/n2-xlarge/

© 2019 Cloud Native Computing Foundation43

Why This Was a Challenging Project: OpenStack

• No existing 100% open source OpenStack installer w/baked-in
high-performance dataplane

• Limited choices for high-performance Layer-2 dataplane:
SR-IOV, VPP, OVS+DPDK

• OpenStack VPP-networking setup was not well documented
• VPP-Neutron plugin did not support standard OVS setup and

configuration (eg. multiple port creation)
• VNF test case deployment configuration with OpenStack-VPP
• Apples-to-apples layer-2 underlay network for K8s
• Physical hardware - Mellanox NICs and proprietary drivers
• Provider limitations - no spanning tree support

https://docs.openstack.org/mitaka/networking-guide/config-sriov.html
https://wiki.fd.io/view/VPP/What_is_VPP%3F
https://docs.openstack.org/neutron/rocky/admin/config-ovs-dpdk.html
https://github.com/openstack/networking-vpp

© 2019 Cloud Native Computing Foundation44

Why This Was a Challenging Project: Kubernetes
• Support for dropping in different data plane solutions
• No Kubernetes installer w/baked-in high-performance data

plane underlay was available
• No CNI plugins which provide a high-performance layer-2

underlay were available
• Network Service Mesh is a promising approach to dynamically

configure the layer 2 network that is currently being manually
configured, but it doesn’t yet meet our needs

• Physical hardware - Mellanox NICs and proprietary drivers
• Provider limitations - no spanning tree support

https://www.networkservicemesh.io/

© 2019 Cloud Native Computing Foundation45

The challenge of transitioning VNFs to CNFs
• Moving from network functionality from physical hardware to

encapsulating the software in a virtual machine (P2V) is generally
easier than containerizing the software (P2C or V2C)

• Many network function virtualization VMs rely on kernel hacks or
otherwise do not restrict themselves to just the stable Linux kernel
userspace ABI
– They also often need to use DPDK or SR-IOV to achieve sufficient

performance
• Containers provide nearly direct access to the hardware with

little or no virtualization overhead
– But they expect containerized applications to use the stable userspace

Linux kernel ABI, not to bypass it

© 2019 Cloud Native Computing Foundation46

Areas for More Discussion
• The strength of no longer being locked into specific OSs

– Any version of Linux >3.10 is acceptable
• Multi-interface pods vs. Network Service Mesh
• Complete parity for IPv6 functionality and dual-stack support in

K8s
• Security, and specifically recommendations from Google and

Jess that come into play when hosting untrusted, user-provided
code
– Possible use of isolation layers such as Firecracker, gVisor, or Kata

• Scheduling container workloads with network-related hardware
constraints (similar to what’s been done for GPUs)
– Network-specific functionality like traffic-shaping

https://github.com/intel/multus-cni
https://docs.google.com/presentation/d/1C3r91ev0tWnFFUjiV4W84Hp965YGR1D9lChZo73Jwq0/edit#slide=id.g37632803a9_34_963
https://github.com/kubernetes/features/issues/508
https://github.com/kubernetes/features/issues/563
https://cloudplatform.googleblog.com/2018/05/Exploring-container-security-Isolation-at-different-layers-of-the-Kubernetes-stack.html
https://blog.jessfraz.com/post/containers-security-and-echo-chambers/
https://firecracker-microvm.github.io/
https://github.com/google/gvisor
https://katacontainers.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/

© 2019 Cloud Native Computing Foundation47

A Service Function Chain: Snake Case
OpenStack Node

Kubernetes Node

Userspace-to-Kernel Dataplane (vSwitch)

Userspace-to-Userspace Dataplane (vSwitch)

VNF VNF VNF

CNF CNF CNF CNF

VNF

memif connections

vhost-user connections

© 2019 Cloud Native Computing Foundation48

A Service Function Chain: Pipeline Case
OpenStack Node

Kubernetes Node

Userspace-to-Kernel Dataplane (vSwitch)

Userspace-to-Userspace Dataplane (vSwitch)

VNF VNF VNF

CNF CNF CNF CNF

VNF

memif connections

vhost-user connections

© 2019 Cloud Native Computing Foundation49

Multiple Service Function Chains: Snake Case
OpenStack Node

Kubernetes Node

Userspace-to-Kernel Dataplane (vSwitch)

Userspace-to-Userspace Dataplane (vSwitch)

VNF VNF VNF VNF VNF VNF

CNF CNF CNF CNF CNF CNF

vhost-user connections vhost-user connections vhost-user connections

memif connections memif connections memif connections

© 2019 Cloud Native Computing Foundation50

Multiple Service Function Chains: Pipeline Case
OpenStack Node

Kubernetes Node

Userspace-to-Kernel Dataplane (vSwitch)

Userspace-to-Userspace Dataplane (vSwitch)

VNF VNF VNF VNF VNF VNF

CNF CNF CNF CNF CNF CNF

vhost-user connections vhost-user connections vhost-user connections

memif connections memif connections memif connections

CNF Testbed Technical Appendix

© 2019 Cloud Native Computing Foundation52

CNF Testbed Deployment stages

Common steps

Clone https://github.com/cncf/cnf-testbed and install any pre-requites listed in the README

Create configuration with Packet API, number of nodes, etc (k8s example)

Run the (k8s or openstack) deploy cluster script which provisions the Packet machines with Terraform

OpenStack Kubernetes

Terraform starts Ansible which pre-configures the Packet machines
(using the openstack infrastructure playbook) including installing
network drivers, optimizing grub and rebooting the compute nodes.

Cloud-init bootstraps the Kubernetes cluster on the Packet nodes.

(Note: next release will use kubeadm for bootstrapping k8s)

Ansible then runs the openstack install playbook, which configures the
Packet switch and VLANs and then deploys OpenStack using Chef to
the Packet nodes

The k8s vpp vswitch installer script runs the Ansible k8s vpp vswitch
playbook which configures the Packet switch and VLANs

Ansible then installs & configures VPP as a vSwitch using the Openstack
vpp-networking plugin to all compute nodes in the cluster

Ansible then optimizes the system configuration, installs & configures the
VPP vSwitch and reboots the worker nodes

https://github.com/cncf/cnf-testbed
https://github.com/cncf/cnf-testbed/blob/master/tools/k8s_benchmark_quad_intel.env.example
https://github.com/cncf/cnf-testbed/blob/38a89ad2dde59711fda8015308a1f0b19f50e946/tools/deploy_k8s_cluster.sh
https://github.com/cncf/cnf-testbed/blob/38a89ad2dde59711fda8015308a1f0b19f50e946/tools/deploy_openstack_cluster.sh
https://github.com/cncf/cnf-testbed/blob/1d81b9d8e1fa814551a4e3d4d71f9840493f0bce/comparison/ansible/openstack_infra_setup.yml
https://github.com/cncf/cnf-testbed/blob/1ed518b987d359da3e5ab1a24d257e41532e5faf/comparison/ansible/openstack_chef_install.yml
https://github.com/cncf/cnf-testbed/tree/1ed518b987d359da3e5ab1a24d257e41532e5faf/comparison/ansible/roles/packet_l2
https://github.com/cncf/cnf-testbed/tree/1ed518b987d359da3e5ab1a24d257e41532e5faf/comparison/ansible/roles/packet_l2
https://github.com/cncf/cnf-testbed/tree/1ed518b987d359da3e5ab1a24d257e41532e5faf/comparison/ansible/roles/chef_openstack_install
https://github.com/cncf/cnf-testbed/blob/c4f9b92bdd7ccf5df5a463a1c4ae744739cf1c90/tools/deploy_k8s_vppvswitch.sh
https://github.com/cncf/cnf-testbed/blob/c4f9b92bdd7ccf5df5a463a1c4ae744739cf1c90/comparison/ansible/k8s_worker_vswitch_quad_intel.yml
https://github.com/cncf/cnf-testbed/blob/c4f9b92bdd7ccf5df5a463a1c4ae744739cf1c90/comparison/ansible/k8s_worker_vswitch_quad_intel.yml
https://github.com/cncf/cnf-testbed/tree/1ed518b987d359da3e5ab1a24d257e41532e5faf/comparison/ansible/roles/packet_l2
https://github.com/openstack/networking-vpp

© 2019 Cloud Native Computing Foundation53

CNF vs. VNF Performance Comparison
The comparison test bed includes multi-node HA clusters for Kubernetes and
OpenStack running chained dataplane CNF and VNFs for performance comparison
testing. All software is open source. The entire test bed and comparison results can be
recreated by following step-by-step documentation on the CLI with a Packet.net
account.
Each test bed will consist of 6 physical machines for each platform - OpenStack and
Kubernetes.

• OpenStack - 2 controllers and 3 compute nodes
• Kubernetes - 2 masters and 3 worker nodes
• Traffic generator - 1 NFVbench system

Provisioning and deployment of K8s and OpenStack clusters includes use of Terraform,
Ansible, and Kitchen/Chef. Network functions primarily use VPP and performance
testing is done with NFVbench with TRex as the traffic generator.

© 2019 Cloud Native Computing Foundation54

Controller 1 Controller 2 Compute 1 Compute 2 Compute 3

Provider Switch

Traffic
generator

Packet layer 2 network

OpenStack Cluster + Traffic generator

© 2019 Cloud Native Computing Foundation55

Master 1 Master 2 Worker 1 Worker 2 Worker 3

Provider Switch

Traffic
generator

Packet layer 2 network

Kubernetes Cluster + Traffic generator

© 2019 Cloud Native Computing Foundation56

K8s Node (Physical Host)

Container Runtime

Vhost-user vs memif
Stay in memory & stay in user space!

QEMU Layer

virtio

VNF

CNF

User Space

vN
IC

1

Kernel SpacevN
IC

2

Kernel Space

User Space

Kernel Space

User Space

vhost-user

P N
IC

1

P N
IC

2

P N
IC

1

P N
IC

2

VPP vSwitch
DPDK

m
em

if1

m
em

if2

VPP vSwitch
DPDK

OpenStack node K8s node

© 2019 Cloud Native Computing Foundation57

CNF Testbed Software components

DPDK

TRex

NFVbench

Kernel 4.4.0-134 DPDK memif
VPP vSwitchQEMU/KVM
VPP Neutron Agent

VPP IP Router

Kernel 4.4.0-134 DPDK memif
VPP vSwitchK8s v1.12.2

VPP IP Router

VPP IP Router

Ubuntu 18.04 LTSUbuntu 18.04 LTS
VPP IP Router

VPP IP Router

VPP IP Router

vhost-user

Kernel 4.4.0-134

Docker

Ubuntu 18.04 LTS

Kernel 4.4.0-134

K8s v1.12.2

Kernel 4.4.0-134

OS “rocky” services
Neutron, API etcd

OpenStack compute

OpenStack controller

Kubernetes worker

Kubernetes master

Traffic generator

Packet API

https://www.dpdk.org/
https://github.com/cisco-system-traffic-generator/trex-core
https://gerrit.opnfv.org/gerrit/gitweb?p=nfvbench.git;a=summary

© 2019 Cloud Native Computing Foundation58

Node #1

What about inter-node connectivity?

Dataplane (vswitch)

Node #2

Dataplane (vswitch)

Node #3

Dataplane (vswitch)

Node #N

Dataplane (vswitch)

© 2019 Cloud Native Computing Foundation59 More details on ONAP wiki

vCPE Use Case

https://wiki.onap.org/pages/viewpage.action?pageId=3246168

© 2019 Cloud Native Computing Foundation60

Project links

• Repo: https://github.com/cncf/cnf-testbed
– Comparison test case summary and overview

• Comparison and code examples:
– CNF Edge Throughput and Baseline Single Chain

• CNF and VNF
• VPP vSwitch

– Baseline NF Performance Test
– In progress: Baseline K8s Chained NF Test
– Github Projects and Issue

https://github.com/cncf/cnf-testbed
https://github.com/cncf/cnf-testbed/issues/105
https://github.com/cncf/cnf-testbed/tree/master/comparison/cnf_edge_throughput
https://github.com/cncf/cnf-testbed/tree/master/comparison/cnf_edge_throughput/vEdge/CNF
https://github.com/cncf/cnf-testbed/tree/master/comparison/cnf_edge_throughput/vEdge/VNF
https://github.com/cncf/cnf-testbed/tree/master/comparison/cnf_edge_throughput/cnf_edge_router/vpp_vswitch
https://github.com/cncf/cnf-testbed/tree/master/comparison/baseline_nf_performance
https://github.com/cncf/cnf-testbed/tree/master/comparison/k8s_chained_nf_test
https://github.com/cncf/cnf-testbed/projects
https://github.com/cncf/cnf-testbed/issues

© 2019 Cloud Native Computing Foundation61

• Let’s Move Everything to Kubernetes! by Tal Liron, Jan 2019
• Next-Generation NFV Orchestration by Tal Liron, April 2019
• Cloud Native Edge App & NFV Stack by Srinivasa Addepalli (Intel) and

Ravi Chunduru (Verizon), April 2019

Endnotes

https://wiki.lfnetworking.org/display/LN/OPNFV-ONAP+January+2019+Session+Proposals?preview=/8257582/10551671/Let%27s%20Move%20Everything%20to%20Kubernetes.pdf
https://events.linuxfoundation.org/wp-content/uploads/2018/07/Next-Generation-NFV-Orchestration.pdf
https://events.linuxfoundation.org/wp-content/uploads/2018/07/ONS2019_Cloud_Native_NFV.pdf

