

KubeCon CloudNativeCon

North America 2019

Beyond Storage Management

Andrew Large and Yinan Li @Google

- Data protection overview
- Data protection for Kubernetes
- Considerations

Data Protection Overview

- Goals
- Key Principles
- Approaches
- Policy
- Roles

Data Protection - Goals

- To save a "point in time" state of the system to be used at a later time:
 - Recovery after failure
 - Workload/data cloning, replication, or migration
 - Offline data analysis
 - Pre-deployment testing
- Generally applies to two forms of "state":
 - System configuration (e.g., host config, application installation and config, etc.)
 - Persistent data

Data Protection - Key Principles

- Recovery Point Objective (**RPO**)
 - Measure of how "out of date" (old) captured data is (lower is better)
- Recovery Time Objective (**RTO**)
 - Measure of how long it takes to recover from saved state (lower is better)

Data Protection - Approaches

Snapshots

- low RPO, moderate RTO
- moderate \$\$ (primary storage)
- low accessibility

- stored in different media (e.g., tape or object)
- moderate-high RPO, high RTO
- low \$
- high accessibility

Replication (async)

- stored in same media, different location
- low RPO, low RTO
- high \$\$\$ (primary storage * 2)
- moderate accessibility

Data Protection - Policy

Considerations

- Simultaneously minimize RTO/RPO and \$
- Common approach mix of snapshots and backups
 - Small number of snapshots to minimize RTO/RPO
 - Larger number of backups to cover additional use cases
 - Scheduled snapshots and backups with expiry/deletion
- 3-2-1 rule
 - Keep at least 3 copies of your data
 - Store 2 backup copies on different devices or storage media
 - Keep at least 1 backup offsite

Data Protection - Roles

- Infrastructure Administrators
 - Setup and manage infrastructure
 - Have full access to systems
 - Execute data protection policy
 - May not have detailed understanding of workloads
- Application Administrators
 - Install, upgrade, and manage applications
 - Restricted/delegated access to system
 - Have detailed understanding of workloads

Data Protection for Kubernetes

- Scope
- Active Efforts
- Potential Future Efforts

Data Protection for K8s - Scope

• Configuration

- "GitOps" treat config as code and manage/deploy from source code control
- Backup/Recovery treat config as state and perform regular backups (using backups for recovery)
- Hybrid GitOps for cluster resources, backup+recovery for applications
- Data (in PersistentVolumes):
 - Volume snapshots stored in the local cluster storage pool
 - Volume backups stored outside the local cluster (typically in object storage)

Data Protection for K8s - Active Efforts

- Volume Snapshots
 - Uses Custom Resource Definitions (CRDs), enhances Container Storage Interface (CSI), and new CSI driver sidecar
 - \circ Alpha in 1.12
 - Beta targeted for 1.17

Data Protection for K8s - Potential Future Efforts

- "Plugin" PVC data populators
 - Existing PVC "dataSource" is difficult to evolve
- Volume backups
 - \circ $\,$ With explicit extra and inter-cluster semantics
- Volume groups (consistency groups)
 - Purpose: capture a single "point in time" across multiple volumes
 - Challenge: models vary widely between storage vendors
- Application-consistent snapshot/backup
 - Point-in-time capture of a running application, including app config and persistent data

Considerations

- Volume backups
- Layered administration
- Application consistency
- Application awareness
- Application-mediated backup

Considerations - Volume Backups

- Existing volume snapshots:
 - Backup-related semantics too unclear for portable data protection policies
 - Missing target location
 - Missing global ID or defined import/export flow
 - Tightly coupled with primary storage
- Multiple backup models desirable:
 - Provided by primary storage (if supported)
 - Provided by separate backup provider (allows for backups that are portable between storage systems)

Considerations - Layered Administration

- Issue infrastructure administrators may not know how to orchestrate application backups
- Approaches:
 - Rely only on generic hooks (e.g., "fsfreeze")
 - Treat application backup and recovery as a separate problem from cluster backup/recovery
 - Provide some mechanism to automatically orchestrate application backups as part of cluster backup

Considerations - Application Consistency

- Goal ensure that an entire application's state is recoverable
 - Typically involves a "flush" and "quiesce" step before capturing volume data and an "unquiesce" step afterwards
 - Generally required only when application has multiple volumes or doesn't maintain crash-consistency of persistent data
- Windows has VSS no equivalent for Linux/K8s
 - Common Linux/K8s approach is to define "hooks" which run commands inside containers
 - Hooks may be generic (e.g., "fsfreeze"), but application-specific commands are also likely

Considerations - Application Consistency

Considerations - Application Awareness

• Goal - smart application-aware orchestration

- Backup orchestration takes advantage of deployment architectures to avoid downtime during backup
- Example orchestration
 - Finding and picking a secondary replica
 - Take that replica temporarily out of replication
 - Flush and quiesce that replica
 - Backup that replica's volume(s)
 - Unquiesce and put it back into replication
 - Recover both primary and secondary replicas from same backed-up volume(s)

Considerations - Application Awareness

Considerations - Application-mediated Backup

- Goals backup using application-specific tools and methods
 - Data portability
 - No down time, but likely with performance penalty
- Example orchestration
 - Find and pick a secondary replica
 - Run some tool against that replica to perform a data dump
 - Upon completion of the data dump, upload the dumped data files to backup storage
 - Use the dump data to restore all the replicas, again using some application-specific tool

Considerations - Application-mediated Backup

- Data protection on Kubernetes is a multi-persona concern
- Data protection on Kubernetes has a lot of potential use cases: disaster recovery, migration, safe upgrades, etc.
- Storage management in Kubernetes goes beyond bare volume snapshots
- Many considerations go into building a data protection system for Kubernetes

Questions?