


Andrew Large and Yinan Li @Google

Beyond Storage Management



Agenda

● Data protection overview

● Data protection for Kubernetes

● Considerations



Data Protection Overview

● Goals

● Key Principles

● Approaches

● Policy

● Roles



Data Protection - Goals

● To save a “point in time” state of the system to be used at a later time:
○ Recovery after failure

○ Workload/data cloning, replication, or migration

○ Offline data analysis

○ Pre-deployment testing

● Generally applies to two forms of “state”:
○ System configuration (e.g., host config, application installation and config, etc.)

○ Persistent data



Data Protection - Key Principles

● Recovery Point Objective (RPO)
○ Measure of how “out of date” (old) captured data is (lower is better)

● Recovery Time Objective (RTO)
○ Measure of how long it takes to recover from saved state (lower is better)



Data Protection - Approaches
Snapshots

● stored inline (e.g., redirect on write, etc.)
● low RPO, moderate RTO
● moderate $$ (primary storage)
● low accessibility

Backups ● stored in different media (e.g., tape or object)
● moderate-high RPO, high RTO
● low $
● high accessibility

Replication (async)
● stored in same media, different location
● low RPO, low RTO
● high $$$ (primary storage * 2)
● moderate accessibility



Data Protection - Policy

● Considerations
○ Simultaneously minimize RTO/RPO and $

● Common approach - mix of snapshots and backups
○ Small number of snapshots to minimize RTO/RPO

○ Larger number of backups to cover additional use cases

○ Scheduled snapshots and backups with expiry/deletion

● 3-2-1 rule
○ Keep at least 3 copies of your data

○ Store 2 backup copies on different devices or storage media

○ Keep at least 1 backup offsite



Data Protection - Roles

● Infrastructure Administrators
○ Setup and manage infrastructure

○ Have full access to systems

○ Execute data protection policy

○ May not have detailed understanding of workloads

● Application Administrators
○ Install, upgrade, and manage applications

○ Restricted/delegated access to system

○ Have detailed understanding of workloads



Data Protection for Kubernetes

● Scope
● Active Efforts
● Potential Future Efforts



Data Protection for K8s - Scope

● Configuration
○ “GitOps” - treat config as code and manage/deploy from source code control

○ Backup/Recovery - treat config as state and perform regular backups (using backups for recovery)

○ Hybrid - GitOps for cluster resources, backup+recovery for applications

● Data (in PersistentVolumes):
○ Volume snapshots - stored in the local cluster storage pool

○ Volume backups - stored outside the local cluster (typically in object storage)



Data Protection for K8s - Active Efforts

● Volume Snapshots
○ Uses Custom Resource Definitions (CRDs), enhances Container Storage Interface (CSI), and 

new CSI driver sidecar

○ Alpha in 1.12

○ Beta targeted for 1.17



Data Protection for K8s - Potential Future Efforts

● “Plugin” PVC data populators
○ Existing PVC “dataSource” is difficult to evolve

● Volume backups
○ With explicit extra and inter-cluster semantics

● Volume groups (consistency groups)
○ Purpose: capture a single “point in time” across multiple volumes

○ Challenge: models vary widely between storage vendors

● Application-consistent snapshot/backup
○ Point-in-time capture of a running application, including app config and persistent data



Considerations

● Volume backups
● Layered administration
● Application consistency
● Application awareness
● Application-mediated backup



Considerations - Volume Backups

● Existing volume snapshots:
○ Backup-related semantics too unclear for portable data protection policies

○ Missing target location

○ Missing global ID or defined import/export flow

○ Tightly coupled with primary storage

● Multiple backup models desirable:
○ Provided by primary storage (if supported)

○ Provided by separate backup provider (allows for backups that are portable between storage 

systems)



Considerations - Layered Administration

● Issue - infrastructure administrators may not know how to orchestrate 

application backups

● Approaches:
○ Rely only on generic hooks (e.g., “fsfreeze”)

○ Treat application backup and recovery as a separate problem from cluster backup/recovery

○ Provide some mechanism to automatically orchestrate application backups as part of cluster 

backup



Considerations - Application Consistency

● Goal - ensure that an entire application’s state is recoverable
○ Typically involves a “flush” and “quiesce” step before capturing volume data and an “unquiesce” 

step afterwards

○ Generally required only when application has multiple volumes or doesn’t maintain 

crash-consistency of persistent data

● Windows has VSS - no equivalent for Linux/K8s
○ Common Linux/K8s approach is to define “hooks” which run commands inside containers

○ Hooks may be generic (e.g., “fsfreeze”), but application-specific commands are also likely



Considerations - Application Consistency

Mongod container

db.fsyncLock();

Data Volume

Mongod container

Data Volume

Data Volume 
Snapshot

Mongod container

db.fsyncUnlock();

Data Volume



Considerations - Application Awareness

● Goal - smart application-aware orchestration
○ Backup orchestration takes advantage of deployment architectures to avoid downtime during 

backup

● Example orchestration
○ Finding and picking a secondary replica

○ Take that replica temporarily out of replication

○ Flush and quiesce that replica

○ Backup that replica’s volume(s)

○ Unquiesce and put it back into replication

○ Recover both primary and secondary replicas from same backed-up volume(s)



Considerations - Application Awareness

Master MySQL 
replica

Slave MySQL 
replica

Slave MySQL 
replica 

freezed/quiesced

Data Volume Data Volume 
Snapshot

X



Considerations - Application-mediated Backup

● Goals - backup using application-specific tools and methods
○ Data portability

○ No down time, but likely with performance penalty

● Example orchestration
○ Find and pick a secondary replica

○ Run some tool against that replica to perform a data dump

○ Upon completion of the data dump, upload the dumped data files to backup storage

○ Use the dump data to restore all the replicas, again using some application-specific tool 



Considerations - Application-mediated Backup

Primary mongod 
server

Secondary mongod 
server

Secondary mongod 
server

Data Dump

mongodump

Backup Storage



Summary

● Data protection on Kubernetes is a multi-persona concern

● Data protection on Kubernetes has a lot of potential use cases: disaster 

recovery, migration, safe upgrades, etc.

● Storage management in Kubernetes goes beyond bare volume snapshots

● Many considerations go into building a data protection system for 

Kubernetes



Questions?


