

Sergey Kanzhelev & Morgan McLean,
Microsoft Google

Beyond Getting Started: Using
OpenTelemetry to its Full Potential

Who we are

Sergey Kanzhelev
SWE at Microsoft

Morgan McLean
PM at Google

OpenTelemetry

OpenTelemetry makes robust, portable telemetry
a built-in feature of cloud-native software.

OpenTelemetry

APIs Integrations Libraries Exporters Collectors

OpenTelemetry architecture
OpenTelemetry is a complete solution for your telemetry collection needs:

App API SDK

Exporter

Collector

Telemetry
Backend

Processing

Exporter
telemetry flow

App

OpenTelemetry architecture
1. Collectors can communicate with various backends via exporters
2. Configuration controls aggregation, batching, and processing
3. In-proc exporters are easily replaceable to work with different backend
4. SDK allows various extensions: sampling, filtering, enrichments
5. OpenTelemetry SDK package can be completely replaced

API SDK

Exporter

Collector

Processing

Extensibility

5 4 2 1

Exporter

3

Telemetry
Backend

OpenTelemetry API surfaces
OpenTelemetry has four API surfaces:

- Configuration of SDK
- API for code instrumentation
- Processing and enriching of telemetry
- Exporters development

Getting started

ServerClient

Sergey Kanzhelev & Morgan McLean
Microsoft Google

Beyond Getting Started: Using
OpenTelemetry to Its Full Potential

Long-running tasks

ServerClient

Basic sampling
Synthetic traffic may hide the real user problems.

Use custom Sampler to filter out synthetic traffic
like the calls to “/health” endpoint.

Custom attributes
Add custom properties for easier querying and differentiating telemetry.

Some ideas of custom attributes:
- Business details: productID, logical operation name
- User session attributes: free tier/paid customer, user anonymized id
- Capture values from http headers

Size Orientation Color

Resource API
Your app is deployed in different environments. Environment name is a very
important custom attribute that will be used to slice the telemetry.

The resource API is used to define resource attributes, which are distinct
from regular attributes

• Deployment name and location
• App name and version
• Hosting environment

Custom attributes as a dimensions
When app is using A/B testing and feature “flights”. Telemetry should be
attributed with this FlightID.

Not a simple telemetry attribution as you’d typically also need to configure
separate metrics dimension and potentially have a better sampling logic
accounting for those attributes.

Propagation of custom attributes
“FlightID” propagation across components:
• use it as a metrics dimension or
• attribute spans

Context propagation
When custom RPC is used, you will need a custom propagation mechanism
implemented.

OpenTelemetry helps with propagation, but for custom protocols it must be
propagated using propagation API.

Instrumentation API
Creating integrations by instrumenting shared code (storage clients, RPC
libraries, etc.) is why OpenTelemetry exists!

You have two choices:

1. Build an OpenTelemetry integration that hooks into callbacks or
performance APIs provided by the client

2. Instrument the shared code with OpenTelemetry APIs

#2 is preferred: it's generally more performant and doesn't break when
clients are updated

IsRecording?
If SDK was NOT enabled,
nothing needs to be captured:
- Always propagate the context

using (_tracer.StartActiveSpan("Execute", SpanKind.Client, out var span))
{

if (span.IsRecording)
{

span.AddAttribute("state”, this.CalculateState());
}

_tracer.TextFormat.Inject(
span.Context,
restObj,
(restObj, k, v) => restObj.Metadata[k] = v);

restObj.Execute();
}

Named tracers
OpenTelemetry uses named tracers
- Improves data visualization and analysis
- Save costs by disabling tracers
- Simplifies troubleshooting

private readonly ITracer _tracer;

public MyClientLibrary()
{

_tracer = TracerFactoryBase.Default
.GetTracer("MyClientLibrary", version);

}

Metrics
Metrics and distributed traces are coming together.

Use metrics:
- Not affected by sampling
- Lightweight as semantics is easier
- Aggregation dimensions can be decided on later

var meter = MeterFactoryBase.Default.GetMeter("MyClientLibrary", version);
var reqCount = meter.CreateLongCounter("requests count");

reqCount.Add(DistributedContext.Current, 1,
meter.GetLabelSet(new Dictionary<string, string>() { {"success", "true" } }));

Performance best practices
The art of instrumenting for telemetry: just enough telemetry for the price

1. Only create spans for longer-running tasks that are worth tracking,
2. Don’t create spans for every function call!
3. Use time event to indicate event occurrence vs. child span
4. Use smart defaults and allow to configure additional details collection

Tell us your scenarios
We want to know more about our users! OpenTelemetry
doesn't report analytics back to us, so we only know
about your experience if you tell us

Tell us about your scenarios:
- What environments you use it
- How do you use it, what do you like the most
- What’s missing

Reach out to us via:
- Gitter: https://gitter.im/open-telemetry/community
- GitHub: https://github.com/open-telemetry/community
- E-mails: cncf-opentelemetry-community@lists.cncf.io
- SIG and community meetings: calendar

https://gitter.im/open-telemetry/community
https://github.com/open-telemetry/community
mailto:cncf-opentelemetry-community@lists.cncf.io
https://calendar.google.com/calendar/embed?src=google.com_b79e3e90j7bbsa2n2p5an5lf60%40group.calendar.google.com&ctz=America%2FLos_Angeles

Get involved
https://opentelemetry.io

Come to out maintainers track session:

Thursday, November 21 • 10:55am - 12:25pm

OpenTelemetry: The First Release, What’s Next, and How to Get Involved

Chris Kleinknecht, Google, Morgan McLean, Google; Sergey Kanzhelev, Microsoft;
Tristan Sloughter, Postmates;

https://sched.co/Uake

https://opentelemetry.io/
https://sched.co/Uake

