
Service Discovery
Past, Present, Future
Challenges of Change

Chase Childers • November 2019 • Site Reliability Engineering

● Site Reliability Engineer

● Fun Fact:
Stayed @ Airbnb’s in 12 Countries

● Boring Fact:
I (probably) drank coffee this morning

● Date of Last Production Incident:
(Caused by me) July 15, 2019

Chase Childers (He/Him)

Engineering is Hard

Service Discovery is Hard

Scaling is Hard

Migrating is Hard

chase.childers@

Phase 0: In the Beginning

Phú Quốc, Vietnam chase.childers@

Smartstack
Distributed Service Discovery

chase.childers@

Nerve

● Executes on service host

● Performs health check on service

● Publishes address, port, and availability to Zookeeper

https://github.com/airbnb/nerve

chase.childers@

https://github.com/airbnb/nerve

Synapse
https://github.com/airbnb/synapse

● Executes on client host

● Watches backend addresses and availability from Zookeeper

● Configures and utilizes HAProxy for listening for outbound traffic
to the designated service via *.synapse

● HAProxy load balances outbound traffic

chase.childers@

https://github.com/airbnb/synapse

Setup via Chef
Distributed Service Discovery

● Services declare/reserve ports in Chef

● Clients list dependencies in Chef for Synapse configuration

● Nerve is enabled with a service name for services

● Custom Synapse and Nerve configurations in Chef

chase.childers@

Phase 1
Kubernetes

chase.childers@

chase.childers@

Smartstack
Expectation

chase.childers@

Smartstack
Reality

chase.childers@

chase.childers@

Nerve
Mini-Announcer
Service Side Availability and
Discoverability

chase.childers@

Nerve
Mini-Announcer
Service Side Availability and
Discoverability

● Executes on service host in a container on the pod

● Performs health check on service

● Checks if all other containers are ready

● Request IP and port assignment from Kubernetes API

● Publishes IP and port and availability to Zookeeper

● Graceful shutdown via K8 preStop hook

Mini-announcer

K8 API

chase.childers@

chase.childers@

● Ingress Proxy

● Bootstrap configure endpoints for local service

● Polls the local SDS-Shim container for updates

Envoy

chase.childers@

chase.childers@

SDS-Shim

● Local ‘shim’ to serve the SDS Rest API that Envoy polls

● Merges multiple sources of configuration

● Pulls service discovery configurations from Zookeeper

● Secure service communication from mTLS Syncer

● Can replace Synapse when utilizing Envoy

chase.childers@

chase.childers@

mTLS Syncer
● On by default for all Kubernetes applications

● Sets up Secure Listeners to receive mTLS connections

● Produces a config that is fed into SDS-Shim

chase.childers@

Intermission
Things Fall Apart

chase.childers@

Growth is Hard
Monolithic Scaling is Harder

chase.childers@

HAProxy
Config Size
A Hypothetical Scenario on Growth

chase.childers@

One Service Lots of
Backends

chase.childers@

How large is the config?
Backends = 10?

chase.childers@

How large is the config?
Backends = 100?

chase.childers@

How large is the config?
Backends = 1000?

chase.childers@

How large is the config?
Backends = 10000?

chase.childers@

Memory
Exhaustion

● HAProxy reloaded every 2-5 seconds during continuous
backend changes (EC2 and K8 Deploys)

● Existing connections are NOT forcefully closed, leaving their
lifecycle to be determine by client and server

● Stale HAProxy processes accumulate and consume huge
chunks of memory

chase.childers@

Network
Saturation

● HAProxy sends initial wave of health checks without jitter or
spreading

● During fast reloading, the target instances become
overloaded.

chase.childers@

What Now?

Phase 2
Envoy

chase.childers@

Service Discovery Containers

HAProxy
Egress Proxy

Synapse
HAProxy Configurator

Mini-Announcer
Discoverability

mTLS Syncer
Secure Communication

SDS-Shim
Envoy Shim

Envoy
Ingress / Egress Proxy

Recap

chase.childers@

Service Discovery Containers

HAProxy
Egress Proxy

Synapse
HAProxy Configurator

Mini-Announcer
Discoverability

mTLS Syncer
Secure Communication

SDS-Shim
Envoy Shim

Envoy
Ingress / Egress Proxy

Recap

chase.childers@

● Ingress Proxy / Egress Proxy

● Configure endpoints for local service

● Polls the local SDS-Shim container for dynamic backends

Envoy

chase.childers@

Kube-Gen
Tool to convert Airbnb Infra Configuration to
Kubernetes Configuration

Kubernetes Config Files

Canary
Deployment

Canary
ConfigMap

Canary
Volume

Production
Deployment

Production
ConfigMap

Production
Volume

Project

 Kube-gen generateApps

Containers

Volumes

Files

Dockerfile

Template
Parameters

chase.childers@

Control Plane Containers
How do you decide and how do you configure?

HAProxy
Egress Proxy

Synapse
HAProxy Configurator

Mini-Announcer
Discoverability

mTLS Syncer
Secure Communication

SDS-Shim
Envoy Shim

Envoy
Ingress / Egress Proxy

chase.childers@

Service Discovery Containers
A new challenger approaches!

HAProxy
Egress Proxy

Synapse
HAProxy Configurator

SD Configurator
Bootstrap Configuration

Mini-Announcer
Discoverability

mTLS Syncer
Secure Communication

SDS-Shim
Envoy Shim

Envoy
Ingress / Egress Proxy

chase.childers@

● Packaged and Released as Ruby Gem

● Wrapped in an Init Container

● Selects service discovery path for dependencies

○ Synapse/HAProxy vs SDS-Shim/Envoy

● Generates bootstrap configs for Synapse / SDS-Shim

● Default service discovery configuration source of truth

● Built and Released independently of kubernetes tooling

SD Configurator
Service Discovery Configuration
Management

chase.childers@

Service Discovery Containers
But Seriously? Soooo many containers!

HAProxy
Egress Proxy

Synapse
HAProxy Configurator

SD Configurator
Bootstrap Configuration

Mini-Announcer
Discoverability

mTLS Syncer
Secure Communication

SDS-Shim
Envoy Shim

Envoy
Ingress / Egress Proxy

chase.childers@

What about my
custom service
discovery
configs?

chase.childers@

Zookeeper
Service Discovery Configs

● Write configs to Zookeeper on converge (via chef)

● Write configs to Zookeeper on deploy (init container)

● Synapse updated to pull these configs from Zookeeper

● Default is to use Chef (EC2) or SD Configurator (K8)

chase.childers@

Intermission
(2)
Things Keep Falling Apart

chase.childers@

Zookeeper
Was that a good idea?

chase.childers@

One Service Lots of
Backends

chase.childers@

How many packets?
Backends = 10?

chase.childers@

How many packets?
Backends = 100?

chase.childers@

How many packets?
Backends = 1000?

chase.childers@

How many packets?
Backends = 10000?

chase.childers@

chase.childers@

avg:system.net.packets_in.count by {host} +
avg:system.net.packets_out.count by {host} > 250000

chase.childers@

A machine is under heavy network traffic. Its current PPS is over 250000/sec which is subject to
EC2's packets per second (PPS) limit rate. AWS has no official documentation on this as far as we
know, but the internet and our experience points to a limit in the 100-150k pps range for classic

and 200-300k pps for VPC.

On this topic, AWS has provided the following guidance:

You can always achieve a better rate by selecting a larger instance type which consequently
operates on a less busier shared environment.

chase.childers@

A machine is under heavy network traffic. Its current PPS is over 250000/sec which is subject to
EC2's packets per second (PPS) limit rate. AWS has no official documentation on this as far as we
know, but the internet and our experience points to a limit in the 100-150k pps range for classic

and 200-300k pps for VPC.

On this topic, AWS has provided the following guidance:

You can always achieve a better rate by selecting a larger instance type which consequently
operates on a less busier shared environment.

chase.childers@

A machine is under heavy network traffic. Its current PPS is over 250000/sec which is subject to
EC2's packets per second (PPS) limit rate. AWS has no official documentation on this as far as we
know, but the internet and our experience points to a limit in the 100-150k pps range for classic

and 200-300k pps for VPC.

On this topic, AWS has provided the following guidance:

You can always achieve a better rate by selecting a larger instance type which consequently
operates on a less busier shared environment.

chase.childers@

What happens then?

1. Request Queuing

2. Delayed propagation of service discovery configurations

3. Delayed propagation of backend hosts

chase.childers@

A machine is under heavy network traffic. It's current PPS is over 250000/sec which is subject to
EC2's packets per second (PPS) limit rate. AWS has no official documentation on this as far as we
know, but the internet and our experience points to a limit in the 100-150k pps range for classic

and 200-300k pps for VPC.

On this topic, AWS has provided the following guidance:

You can always achieve a better rate by selecting a larger instance type which consequently
operates on a less busier shared environment.

chase.childers@

Easy. Just Upgrade the Hosts!

chase.childers@

Easy. Just Upgrade the Hosts!
- Famous Last Words

chase.childers@

What else did we do?

1. Migrate dependencies away from monolith

2. Data encoding in Smartstack

3. Read optimizations; group fetch vs individual fetches (fewer roundtrips)

4. Add jitter and self throttling to Nerve

chase.childers@

And Now Back To
Our Regularly

Scheduled
Programming

Service Discovery Containers
Hello Again!

HAProxy
Egress Proxy

Synapse
HAProxy Configurator

SD Configurator
Bootstrap Configuration

Mini-Announcer
Discoverability

mTLS Syncer
Secure Communication

SDS-Shim
Envoy Shim

Envoy
Ingress / Egress Proxy

chase.childers@

Service Discovery Containers
Smartstack is Dead! Long Live Service Discovery!

HAProxy
Egress Proxy

Synapse
HAProxy Configurator

SD Configurator
Bootstrap Configuration

Mini-Announcer
Discoverability

mTLS Syncer
Secure Communication

SDS-Shim
Envoy Shim

Envoy
Ingress / Egress Proxy

chase.childers@

Phase
2.5

(origin/HEAD) [INPROGRESS] Migrations

chase.childers@

You Break Service Discovery
You Break EVERYTHING

chase.childers@

Challenges we face during migration other than scale

1. Transparency to and for Service Owners

chase.childers@

A/B
Dashboards
Service Level Metrics

chase.childers@

Challenges we face during migration other than scale

1. Transparency to and for Service Owners

2. Iterating while migrating

chase.childers@

Challenges we face during migration other than scale

1. Transparency to and for Service Owners

2. Iterating while migrating

3. Ad-hoc and non-standardized service configurations

chase.childers@

Challenges we face during migration other than scale

1. Transparency to and for Service Owners

2. Iterating while migrating

3. Ad-hoc and non-standardized service configurations

4. Distributed service configurations source of truth

chase.childers@

Challenges we face during migration other than scale

1. Transparency to and for Service Owners

2. Iterating while migrating

3. Ad-hoc and non-standardized service configurations

4. Distributed service configurations source of truth

5. Service discovery version rollouts

chase.childers@

Version Tracking
Via Metric Tagging

chase.childers@

Recap /
Learnings

chase.childers@

Service Discovery is Hard

chase.childers@

Service Discovery is Hard

Scaling is Hard

chase.childers@

Migrating is Hard

Service Discovery is Hard

Scaling is Hard

chase.childers@

Engineering is Hard

Service Discovery is Hard

Scaling is Hard

Migrating is Hard

chase.childers@

Jobs @ airbnb.com/careers
Me @ chasechilders.com

Dolomites, Italy

chase.childers@

Ben Hughes

Sec 20CD
Nov 19

4:25 PM

RM 15AB
Nov 20

11:50 AM Jian Cheung and Stephen Chan

Scaling Kubernetes to
Thousands of Nodes Across
Multiple Clusters, Calmly

Did Kubernetes Make My p95’s
Worse?

chase.childers@

Jobs @ airbnb.com/careers
Me @ chasechilders.com

Dolomites, Italy

chase.childers@

