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Enterprise Machine 
Learning



*Source: Hidden Technical Debt in Machine Learning Systems

Perception

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf


*Source: Hidden Technical Debt in Machine Learning Systems

In reality…ML Code is tiny part in 
this overall platform

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
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End to end ML on Kubernetes?

● Containers

● Packaging

● Kubernetes service endpoints

● Persistent volumes

● Scaling

● Immutable deployments

● GPUs, Drivers & the GPL

● Cloud APIs

● DevOps

● ...

First, can you become an expert in ...
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Introducing:Kubeflow



Distributed Model Training and HPO 
(TFJob, PyTorch Job, Katib, …)

• Addresses One of the key goals for model builder 

persona: 

Distributed Model Training and Hyper parameter 
optimization for Tensorflow, PyTorch etc.

• Common problems in HP optimization

• Overfitting

• Wrong metrics

• Too few hyperparameters

• Katib: a fully open source, Kubernetes-native 

hyperparameter tuning service

• Inspired by Google Vizier

• Framework agnostic

• Extensible algorithms

• Simple integration with other Kubeflow 
components

• Kubeflow also supports distributed MPI based training 

using Horovod

https://sigopt.com/blog/common-problems-in-hyperparameter-optimization/


Kubeflow Pipelines

▪ Containerized implementations of ML Tasks
▪ Pre-built components: Just provide params or code 

snippets (e.g. training code)
▪ Create your own components from code or libraries

▪ Use any runtime, framework, data types

▪ Attach k8s objects - volumes, secrets

▪ Specification of the sequence of steps
▪ Specified via Python DSL 
▪ Inferred from data dependencies on input/output

▪ Input Parameters
▪ A “Run” = Pipeline invoked w/ specific parameters
▪ Can be cloned with different parameters

▪ Schedules
▪ Invoke a single run or create a recurring scheduled 

pipeline
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IBM and Seldon 
Major Contributors Source devstats.org



Community is growing!
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Develop
(Jupyter)

Deploy
(KFServing)

Train
(Job CRs)

Build
(Fairing)

Core CUJ

Kubeflow 1.0 Arriving January 2020 

http://bit.ly/kf_roadmap



Production Model Serving



Assign Hyperparameters

and Train

❑ Rollouts:
Is this rollout safe? How do I roll 
back? Can I test a change 
without swapping traffic?

❑ Protocol Standards:
How do I make a prediction? 
GRPC? HTTP? Kafka?

❑ Cost: 
Is the model over or under scaled? 
Are resources being used efficiently?

❑ Monitoring:
Are the endpoints healthy? What is 
the performance profile and request 
trace? 

Prepared 
and 

Analyzed 
Data

Dev
el

op M
odel Train and Tune 

Hyperparameters

M
onitor

Deplo
y

Trained 
Model

Deployed
Model

Prepared Data

Untrained 
Model

❑ Frameworks:
How do I serve on Tensorflow? 
XGBoost? Scikit Learn? Pytorch? 
Custom Code? 

❑ Features:
How do I explain the predictions? 
What about detecting outliers and 
skew? Bias detection? Adversarial 
Detection?

❑ How do I wire up custom pre and 
post processing

Production Model Serving? 
How hard could it be?



Experts fragmented across industry

● Seldon Core was pioneering Graph Inferencing.
● IBM and Bloomberg were exploring serverless ML lambdas. IBM gave a talk on 

the ML Serving with Knative at last KubeCon in Seattle
● Google had built a common Tensorflow HTTP API for models.
● Microsoft Kubernetizing their Azure ML Stack



Putting the pieces together

● Kubeflow created the conditions for collaboration.
● A promise of open code and open community.
● Shared responsibilities and expertise across multiple companies.
● Diverse requirements from different customer segments



Introducing KFServing



KFServing

● Founded by Google, Seldon, IBM, Bloomberg and Microsoft

● Part of the Kubeflow project

● Focus on 80% use cases - single model rollout and update

● Kfserving 1.0 goals:

○ Serverless ML Inference

○ Canary rollouts

○ Model Explanations

○ Optional Pre/Post processing 



KFServing Stack



• Event triggered functions on Kubernetes
•    Scale to and from zero
• Queue based autoscaling for GPUs and TPUs. KNative autoscaling by default provides inflight requests per pod
• Traditional CPU autoscaling if desired. Traditional scaling hard for disparate devices (GPU, CPU, TPU)

Knative provides a set of building blocks that enable declarative, container-based, serverless workloads 
on Kubernetes. Knative Serving provides primitives for serving platforms such as:

KNative

IBM is  
2nd largest contributor 



Connect: Traffic Control, Discovery, 
Load Balancing, Resiliency

Observe: Metrics, Logging, Tracing

Secure: Encryption (TLS), 
Authentication, and Authorization of 
service-to-service communication

Control: Policy Enforcement

An open service mesh platform to connect, observe, secure, and control microservices. 
Founded by Google, IBM and Lyft.  IBM is the 2nd largest contributor

Istio



Manages the hosting aspects of your models

• InferenceService - manages the lifecycle of 
models

• Configuration - manages history of model 
deployments. Two configurations for default 
and canary.

• Revision - A snapshot of your model version

• Config and image

• Route - Endpoint and network traffic 
management

Route Default
Configuration 

Revision 1

Revision M90
%

KFService

Canary
Configuration 

Revision 1

Revision N10
%

KFServing: Default and 
Canary Configurations



Model Servers

       -  TensorFlow

       -  Nvidia TRTIS

       -  PyTorch

       -  XGBoost

       -  SKLearn

       -  ONNX

   

       Components:

         -  Predictor, Explainer, 
Transformer

       Storages

 -  AWS/S3

 -  GCS

 -  Azure Blob

 -  PVC

Supported Frameworks, Components 
and Storage



The InferenceService architectureconsists of a static graph of components which coordinate requests for a 
single model. Advanced features such as Ensembling, A/B testing, and Multi-Arm-Bandits should compose 
InferenceServices together.

Inference Service Control 
Plane



KFServing Deployment View



- Today’s popular model servers, such as TFServing, ONNX, Seldon, 

TRTIS, all communicate using similar but non-interoperable HTTP/gRPC 

protocol

- KFServing v1 data plane protocol uses TFServing compatible HTTP API 

and introduces explain verb to standardize between model servers, 

punt on v2 for gRPC and performance optimization.

KFServing Data Plane Unification



API Verb Path Payload

List Models GET /v1/models [model_names]

Readiness GET /v1/models/<model_name>

Predict POST /v1/models/<model_name>:predict Request: {instances:[]}
Response: {predictions:[]}

Explain POST /v1/models<model_name>:explain Request: {instances:[]}
Response: {predictions:[],
explanations:[]}

KFServing Data Plane v1 protocol



apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "InferenceService"
metadata:
  name: "sklearn-iris"
spec:
  default:

sklearn:
  modelUri: "gs://kfserving-samples/models/sklearn/iris"

apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "InferenceService"
metadata:
  name: "flowers-sample"
spec:
  default:

tensorflow:
  modelUri: "gs://kfserving-samples/models/tensorflow/flowers"

apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "InferenceService"
metadata:
  name: ”pytorch-iris"
spec:
  default:

pytorch:
  modelUri: "gs://kfserving-samples/models/pytorch/iris"

KFServing Examples



apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "KFService"
metadata:
  name: "my-model"
spec:
  default:

# 90% of traffic is sent to this model
tensorflow:

  modelUri: "gs://mybucket/mymodel-2"
  canaryTrafficPercent: 10
  canary:

# 10% of traffic is sent to this model
tensorflow:

  modelUri: "gs://mybucket/mymodel-3"

apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "KFService"
metadata:
  name: "my-model"
spec:
  default:

tensorflow:
  modelUri: "gs://mybucket/mymodel-2"
  # Defaults to zero, so can also be omitted or explicitly set to zero.
  canaryTrafficPercent: 0
  canary:

# Canary is created but no traffic is directly forwarded.
tensorflow:

  modelUri: "gs://mybucket/mymodel-3"

Canary

Pinned

Canary/Pinned Examples



Demo



Model Serving is accomplished. Can the 
predictions be trusted?

Assign Hyperparameters

and Train

Prepared 
and 

Analyzed 
Data

Dev
el

op M
odel Train and Tune 

Hyperparameters

M
onitor

Valid
ate

 and  D
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y

Trained 
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Deployed
Model

Prepared Data

Untrained 
Model

Can the model explain 
its predictions?

Are there concept drifts?

Is there an outlier? 

Is the model vulnerable 
to adversarial attacks?



Production Machine Learning Serving 



Production ML Architecture

InferenceService

logger Broker

Trigger

Outlier 
Detection

Alerting

API

Serving

Model

Explainer

Adversarial
Detection

Concept
Drift



Machine Learning Explanations



Why Explain ML Models?

Regulation (GDPR):

[the data subject possesses the right to access] “meaningful information about 
the logic involved, as well as the significance and the envisaged consequences of 
such processing for the data subject."

Insight:

• Is my model doing what I think it’s doing?
• Investigate model behaviour, e.g. on outliers



ML Explanation Goals

• Human interpretable

• Not over-simplified

• Trade-off between interpretability and fidelity



Local Black Box Explanations

Explain this:

Deny: 
p=0.95
Accept: 
p=0.05

Age:
23

Occupation:
Bar staff

Postcode:
IV3 5SN

Owns house:
No



Architecture

Model ŷx

e

Explainer ex

X
̂

Ŷ Expensive!



                                  https://github.com/SeldonIO/alibi

State of the art implementations:

Seldon Alibi:Explain

Janis KlaiseGiovanni Vacanti Alexandru CocaArnaud Van Looveren

• Anchors

• Counterfactuals 

• Contrastive explanations

• Trust scores

https://github.com/SeldonIO/alibi
https://uk.linkedin.com/in/giovanni-vacanti-289906102/en


Model

Persian 
cat: 
p=0.90
Dishwasher
: p=0.003
Notebook:
p=0.002

Precision: 
0.95

Explainer

X
̂

Ŷ

Anchors



KfServing Explanations
apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
 name: "income"
spec:
 default:
   predictor:
     sklearn:
       storageUri: "gs://seldon-models/sklearn/income/model"           
   explainer:
     alibi:
       type: AnchorTabular
       storageUri: "gs://seldon-models/sklearn/income/explainer"

apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
 name: "moviesentiment"
spec:
 default:
   predictor:
     sklearn:
       storageUri: "gs://seldon-models/sklearn/moviesentiment"                       
   explainer:
     alibi:
       type: AnchorText



Explanation Demos

Income Prediction SKLearn Classifier and 
Alibi:Explain AnchorTabular Explainer

https://github.com/kubeflow/kfserving/blob/master/docs/samples/ex
planation/alibi/income/income_explanations.ipynb

Movie Review RoBERTa Classifier and 
Alibi:Explain AnchorText Explainer

https://github.com/SeldonIO/seldon-models/blob/master/pytorch/m
oviesentiment_roberta/inference/kfserving/movie_review_explanation
s.ipynb



Income Model and Explainer

InferenceService

API

Serving

Income Model

Income Explainer
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AIX360 toolkit is an open-source library to help explain AI and 
machine learning models and their predictions. This includes three 
classes of algorithms: local post-hoc, global post-hoc, and directly 
interpretable explainers for models that use image, text, and 
structured/tabular data. 

The AI Explainability360 Python package includes a comprehensive 
set of explainers, both at global and local level.
Toolbox
Local post-hoc
Global post-hoc
Directly interpretable

http://aix360.mybluemix.net

AI Explainability 360 
↳ (AIX360)
https://github.com/IBM/AIX360

Explanations: Resources

AIX360

http://aix360.mybluemix.net


Payload Logging



Payload Logging

Why:
● Capture payloads for analysis and future retraining of the model
● Perform offline processing of the requests and responses

KfServing Implementation (alpha):

● Add to any InferenceService Endpoint:  Predictor, Explainer, Transformer
● Log Requests, Responses or Both from the Endpoint
● Simple specify a URL to send the payloads
● URL will receive CloudEvents

POST /event HTTP/1.0
Host: example.com
Content-Type: application/json
ce-specversion: 1.0
ce-type: repo.newItem
ce-source: http://bigco.com/repo
ce-id: 610b6dd4-c85d-417b-b58f-3771e532
 
<payload>



Payload Logging
apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
 name: "sklearn-iris"
spec:
 default:
   predictor:
     minReplicas: 1     
     logger:
       url: http://message-dumper.default/
       mode: all
     sklearn:
       storageUri: "gs://kfserving-samples/models/sklearn/iris"
       resources:
         requests:
           cpu: 0.1



Payload Logging Architecture 
Examples

Model

InferenceService

logger

Broker

Trigger

Outlier 
Detector Alerting

API

Http kafka 
Bridge Kafka Cluster

Serving



ML Inference Analysis



ML Inference Analysis

Don’t trust predictions on instances outside of training distribution!

• Outlier Detection

• Adversarial Detection

• Concept Drift



Outlier Detection
Don’t trust predictions on instances outside of training distribution!

→ Outlier Detection
Detector types:

- stateful online vs. pretrained offline
- feature vs. instance level detectors

Data types: 
- tabular, images & time series

Outlier types:
- global, contextual & collective outliers



Adversarial Detection
Don’t trust predictions on instances outside of training distribution!
→ Adversarial Detection

- Outliers w.r.t. the model prediction

- Detect small input changes with a big impact on predictions!



Concept Drift
Production data distribution != training distribution?

→ Concept Drift! Retrain!

Need to track the right distributions:
- feature vs. instance level

- continuous vs. discrete

- online vs. offline training data

- track streaming number of outliers 



                       https://github.com/SeldonIO/alibi-detect

State of the art implementations:

Seldon Alibi:Detect

Janis KlaiseGiovanni Vacanti Alexandru CocaArnaud Van Looveren

• Outlier Detection

• Adversarial Detection

• Concept Drift (roadmap)

https://github.com/SeldonIO/alibi-detect
https://uk.linkedin.com/in/giovanni-vacanti-289906102/en


Outlier Detection Demo

Outlier image and heatmap of VAE outlier score per RGB channel

KFServing CIFAR10 Model with Alibi:Detect VAE Outlier Detector
https://github.com/SeldonIO/alibi-detect/tree/master/integrations/samples/kfserving/od-cifae10

https://github.com/SeldonIO/alibi-detect/tree/master/integrations/samples/kfserving/od-cifar10


Outlier Detection on CIFAR10

CIFAR10 Model

InferenceService

logger Broker

Trigger

CIFAR10
Outlier Detector

Message
Dumper

API

Serving



Adversarial Detection Demos

KFServing MNIST Model with 
Alibi:Detect VAE Adversarial Detector

https://github.com/SeldonIO/alibi-detect/tree/master/integrations/s
amples/kfserving/ad-mnist

KFServing Traffic Signs Model with 
Alibi:Detect VAE Adversarial Detector

https://github.com/SeldonIO/alibi-detect/tree/master/integrations/s
amples/kfserving/ad-signs

https://github.com/SeldonIO/alibi-detect/tree/master/integrations/samples/kfserving/ad-mnist
https://github.com/SeldonIO/alibi-detect/tree/master/integrations/samples/kfserving/ad-mnist
https://github.com/SeldonIO/alibi-detect/tree/master/integrations/samples/kfserving/ad-signs
https://github.com/SeldonIO/alibi-detect/tree/master/integrations/samples/kfserving/ad-signs


Adversarial Detection on Traffic Signs

Traffic Signs Model

InferenceService

logger Broker

Trigger

Traffic Signs
Adversarial Detector

Message
Dumper

API

Serving



•         
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Adversarial Robustness 360 
↳ (ART)

ART is a library dedicated to adversarial machine learning. Its 
purpose is to allow rapid crafting and analysis of attack, defense 
and detection methods for machine learning models. Applicable 
domains include finance, self driving vehicles etc.

The Adversarial Robustness Toolbox provides an implementation 
for many state-of-the-art methods for attacking and defending 
classifiers.

https://github.com/IBM/adversarial-robustness-toolbox

Toolbox: Attacks, defenses, and metrics
Evasion attacks
Defense methods
Detection methods
Robustness metrics

ART

https://art-demo.mybluemix.net/

Adversarial Attack, Detection and 
Defense Mechanisms: Resources

https://art-demo.mybluemix.net/


Summary and Roadmap



Production ML Architecture

InferenceService
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Open Source Projects

● ML Inference
○ KFServing
○ Seldon Core

https://github.com/kubeflow/kfserving

https://github.com/SeldonIO/seldon-core

● Model Explanations
○ Seldon Alibi

○ IBM AI Explainability 360

https://github.com/seldonio/alibi

https://github.com/IBM/AIX360

● Outlier and Adversarial Detection and 
Concept Drift

○ Seldon Alibi-detect

https://github.com/seldonio/alibi-detect

● Adversarial Attack, Detection and Defense
○ IBM Adversarial Robustness 360

https://github.com/IBM/adversarial-robustness-toolbox

https://github.com/kubeflow/kfserving
https://github.com/SeldonIO/seldon-core
https://github.com/seldonio/alibi
https://github.com/IBM/AIX360
https://github.com/seldonio/alibi-detect
https://github.com/IBM/adversarial-robustness-toolbox


Related Tech Kubecon Talks


