

KubeCon CloudNativeCon

North America 2019

KubeCon

CloudNativeCon

North America 2019

Inferencing Leveraging KNative, Istio and Kubeflow Serving

Animesh Singh - IBM Clive Cox - Seldon

- Introduction to Machine Learning Serving and its challenges
- Kubeflow Serving Introduction
- Monitoring ML Models
- Summary and Roadmap

Enterprise Machine Learning

10:19 AM - 7 Mar 2018

Perception

In reality...ML Code is tiny part in tube Con Cloud NativeCon this overall platform

End to end ML on Kubernetes?

First, can you become an expert in ...

- Containers
- Packaging
- Kubernetes service endpoints
- Persistent volumes
- Scaling
- Immutable deployments
- GPUs, Drivers & the GPL
- Cloud APIs
- DevOps

Introducing:Kubeflow

Distributed Model Training and HPO (TFJob, PyTorch Job, Katib, …)

• Addresses One of the key goals for model builder persona:

Distributed Model Training and Hyper parameter optimization for Tensorflow, PyTorch etc.

- <u>Common problems</u> in HP optimization
 - Overfitting
 - Wrong metrics
 - Too few hyperparameters
- Katib: a fully open source, Kubernetes-native hyperparameter tuning service
 - Inspired by Google Vizier
 - Framework agnostic
 - Extensible algorithms

tudy Info				
Study Config 🖿 Study Results				
				📩 CSV Download
man standard and		-16071700		
ihow 10 🗢 entries				Search:
WorkerID 1	TrialID	mean_absolute_error	learning-rate	n-estimators
a082b67ad67c63ba	vdca23208a96d392	18516.93	0.1655555555555555555	10265
a1025286d7d64a01	h4fe53b19226f9e1			
a20ca959e78c8af2	a07fe53b73c8ae70			
a2240a2afd13058e	d80006060888aae6			
a2e4e2de4740e26d	rb265a36a14496ce			
a2fa7a43a6029460	z53ac2fa7266a6e1	17589.17	0.09609053497942387	8234

KubeCon

CloudNativeCon

North America 2019

Kubeflow Pipelines

- Pre-built components: Just provide params or code snippets (e.g. training code)
- Create your own components from code or libraries
- Use any runtime, framework, data types
- Attach k8s objects volumes, secrets
- Specification of the sequence of steps
 - Specified via Python DSL
 - Inferred from data dependencies on input/output
- Input Parameters
 - A "Run" = Pipeline invoked w/ specific parameters
 - Can be cloned with different parameters
- Schedules
 - Invoke a single run or create a recurring scheduled pipeline

Rows per page: 10 👻 <

IBM and Seldon Major Contributors Source devstats.org

Companies summary -

Range	Last year -	Metric	Contributions -
Comp	any		
All			
Googl	e		
IBM			
Cisco			
Caiclo	oud		
Amaz	on		
Micro	soft		
Seldo	n		
Net E	ASE		
NetEa	se		
NTT			
Intel			

Kubeflow 1.0 Arriving January 2020

KubeCon

CloudNativeCon

North America 2019

Production Model Serving

Production Model Serving? How hard could it be?

post processing

Model

Protocol Standards: How do I make a prediction? GRPC? HTTP? Kafka?

Experts fragmented across industry

KubeCon CloudNativeCon North America 2019

- Seldon Core was pioneering Graph Inferencing.
- IBM and Bloomberg were exploring serverless ML lambdas. IBM gave a talk on the ML Serving with Knative at last KubeCon in Seattle
- Google had built a common Tensorflow HTTP API for models.
- Microsoft Kubernetizing their Azure ML Stack

Putting the pieces together

KubeCon CloudNativeCon

- Kubeflow created the conditions for collaboration.
- A promise of open code and open community.
- Shared responsibilities and expertise across multiple companies.
- Diverse requirements from different customer segments

KubeCon

CloudNativeCon

North America 2019

Introducing KFServing

- Founded by Google, Seldon, IBM, Bloomberg and Microsoft
- Part of the Kubeflow project
- Focus on 80% use cases single model rollout and update
- Kfserving 1.0 goals:
 - Serverless ML Inference
 - Canary rollouts
 - Model Explanations
 - Optional Pre/Post processing

KFServing Stack

KNative

IBM is 2nd largest contributor

Knative provides a set of building blocks that enable declarative, container-based, serverless workloads on Kubernetes. Knative Serving provides primitives for serving platforms such as:

- Event triggered functions on Kubernetes
- Scale to and from zero
- Queue based autoscaling for GPUs and TPUs. KNative autoscaling by default provides inflight requests per pod
- Traditional CPU autoscaling if desired. Traditional scaling hard for disparate devices (GPU, CPU, TPU)

An open service mesh platform to **connect**, **observe**, **secure**, and **control** microservices. Founded by Google, IBM and Lyft. IBM is the 2nd largest contributor

Connect: Traffic Control, Discovery, Load Balancing, Resiliency

Observe: Metrics, Logging, Tracing

Secure: Encryption (TLS), Authentication, and Authorization of service-to-service communication

Control: Policy Enforcement

KFServing: Default and Canary Configurations

Manages the hosting aspects of your models

- InferenceService manages the lifecycle of models
- **Configuration** manages history of model deployments. Two configurations for default and canary.
- **Revision** A snapshot of your model version
 - Config and image
- **Route** Endpoint and network traffic management

Supported Frameworks, Components and Storage

Model Servers

- TensorFlow
- Nvidia TRTIS
- PyTorch
- XGBoost
- SKLearn
- ONNX

Components:

- Predictor, Explainer, Transformer

Storages

- AWS/S3
- GCS
- Azure Blob
- PVC

Inference Service Control Plane

The InferenceService architectureconsists of a static graph of components which coordinate requests for a single model. Advanced features such as Ensembling, A/B testing, and Multi-Arm-Bandits should compose InferenceServices together.

KFServing Deployment View

KFServing Data Plane Unification

Today's popular model servers, such as TFServing, ONNX, Seldon,
 TRTIS, all communicate using similar but non-interoperable HTTP/gRPC

protocol

KFServing v1 data plane protocol uses TFServing compatible HTTP API and introduces explain verb to standardize between model servers, punt on v2 for gRPC and performance optimization.

KFServing Data Plane v1 protocol

API	Verb	Path	Payload
List Models	GET	/v1/models	[model_names]
Readiness	GET	/v1/models/ <model_name></model_name>	
Predict	POST	/v1/models/ <model_name>:predict</model_name>	Request: {instances:[]} Response: {predictions:[]}
Explain	POST	/v1/models <model_name>:explain</model_name>	Request: {instances:[]} Response: {predictions:[], explanations:[]}

KFServing Examples

apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "InferenceService"
metadata:
 name: "sklearn-iris"
spec:
 default:
 sklearn:
 modelUri: "gs://kfserving-samples/models/sklearn/iris"

apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "InferenceService"
metadata:
 name: "flowers-sample"
spec:
 default:
 tensorflow:
 modelUri: "gs://kfserving-samples/models/tensorflow/flowers"


```
apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "InferenceService"
metadata:
    name: "pytorch-iris"
spec:
    default:
        pytorch:
        modelUri: "gs://kfserving-samples/models/pytorch/iris"
```

PYT⁶RCH

Canary/Pinned Examples


```
apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "KFService"
metadata:
    name: "my-model"
spec:
    default:
        # 90% of traffic is sent to this model
        tensorflow:
        modelUri: "gs://mybucket/mymodel-2"
    canaryTrafficPercent: 10
    canary:
        # 10% of traffic is sent to this model
        tensorflow:
        modelUri: "gs://mybucket/mymodel-3"
```

Canary	
--------	--


```
apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "KFService"
metadata:
    name: "my-model"
spec:
    default:
        tensorflow:
        modelUri: "gs://mybucket/mymodel-2"
# Defaults to zero, so can also be omitted or explicitly set to zero.
    canaryTrafficPercent: 0
    canary:
        # Canary is created but no traffic is directly forwarded.
        tensorflow:
        modelUri: "gs://mybucket/mymodel-3"
```


Model Serving is accomplished. Can the predictions be trusted?

KubeCon CloudNativeCon

North America 2019

Production Machine Learning Serving

Production ML Architecture

Concept Drift

KubeCon CloudNativeCon

North America 2019

Machine Learning Explanations

Why Explain ML Models?

Regulation (GDPR):

[the data subject possesses the right to access] "meaningful information about the logic involved, as well as the significance and the envisaged consequences of such processing for the data subject."

Insight:

- Is my model doing what I think it's doing?
- Investigate model behaviour, e.g. on outliers

ML Explanation Goals

- Human interpretable
- Not over-simplified
- Trade-off between interpretability and fidelity

Local Black Box Explanations

Explain this:

Architecture

Seldon Alibi:Explain

https://github.com/SeldonIO/alibi

Giovanni Vacanti

Janis Klaise

Arnaud Van Looveren

Alexandru Coca

State of the art implementations:

- Anchors
- Counterfactuals
- Contrastive explanations
- Trust scores

Anchors

KfServing Explanations

apiVersion: "serving.kubeflow.org/v1alpha2"	apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"	kind: "InferenceService"
metadata:	metadata:
name: "income"	name: "moviesentiment"
spec:	spec:
default:	default:
predictor:	predictor:
sklearn:	sklearn:
storageUri: "gs://seldon-models/sklearn/income/model"	storageUri: "gs://seldon-models/sklearn/moviesentiment"
explainer:	explainer:
alibi:	alibi:
type: AnchorTabular	type: AnchorText
storageUri: "gs://seldon-models/sklearn/income/explainer"	
ii	i

Explanation Demos

Income Prediction SKLearn Classifier and Alibi:Explain AnchorTabular Explainer

https://github.com/kubeflow/kfserving/blob/master/docs/samples/ex planation/alibi/income/income_explanations.ipynb

Movie Review RoBERTa Classifier and Alibi:Explain AnchorText Explainer

https://github.com/SeldonIO/seldon-models/blob/master/pytorch/m oviesentiment_roberta/inference/kfserving/movie_review_explanation s.ipynb

Income Model and Explainer

Explanations: Resources

Al Explainability 360 (AIX360)

https://github.com/IBM/AIX360

AIX360 toolkit is an open-source library to help explain AI and machine learning models and their predictions. This includes three classes of algorithms: local post-hoc, global post-hoc, and directly interpretable explainers for models that use image, text, and structured/tabular data.

The AI Explainability360 Python package includes a comprehensive set of explainers, both at global and local level.

Toolbox

Local post-hoc Global post-hoc Directly interpretable

http://aix360.mybluemix.net

AIX360

KubeCon

CloudNativeCon

North America 2019

Payload Logging

Payload Logging

Why:

- Capture payloads for analysis and future retraining of the model
- Perform offline processing of the requests and responses

KfServing Implementation (alpha):

- Add to any InferenceService Endpoint: Predictor, Explainer, Transformer
- Log Requests, Responses or Both from the Endpoint
- Simple specify a URL to send the payloads
- URL will receive CloudEvents

POST /event HTTP/1.0 Host: example.com Content-Type: application/json ce-specversion: 1.0 ce-type: repo.newItem ce-source: http://bigco.com/repo ce-id: 610b6dd4-c85d-417b-b58f-3771e532

<payload>

Payload Logging

apiVersion: "serving.kubeflow.org/v1alpha2" kind: "InferenceService" metadata: name: "sklearn-iris" spec: default: predictor: minReplicas: 1 logger: url: http://message-dumper.default/ mode: all sklearn storageUri: "gs://kfserving-samples/models/sklearn/iris" resources: requests: cpu: 0.1

Payload Logging Architecture Examples

KubeCon

CloudNativeCon

North America 2019

KubeCon

CloudNativeCon

North America 2019

ML Inference Analysis

Don't trust predictions on instances outside of training distribution!

- Outlier Detection
- Adversarial Detection
- Concept Drift

Outlier Detection

Don't trust predictions on instances outside of training distribution!

\rightarrow Outlier Detection

Detector types:

- stateful online vs. pretrained offline
- feature vs. instance level detectors

Data types:

- tabular, images & time series

Outlier types:

- global, contextual & collective outliers

Adversarial Detection

Don't trust predictions on instances outside of training distribution!

\rightarrow Adversarial Detection

- Outliers w.r.t. the model prediction
- Detect small input changes with a big impact on predictions!

Pred: 6

Pred: 0

+ 0.005 x

Concept Drift

<u>Production data distribution != training distribution?</u>

 \rightarrow Concept Drift! Retrain!

Need to track the right distributions:

- feature vs. instance level
- continuous vs. discrete
- online vs. offline training data
- track streaming number of outliers

https://github.com/SeldonIO/alibi-detect

Giovanni Vacanti

Janis Klaise

Arnaud Van Looveren

Alexandru Coca

State of the art implementations:

- Outlier Detection
- Adversarial Detection
- Concept Drift (roadmap)

Outlier Detection Demo

KFServing CIFAR10 Model with Alibi:Detect VAE Outlier Detector

https://github.com/SeldonIO/alibi-detect/tree/master/integrations/samples/kfserving/od-cifae10

Outlier image and heatmap of VAE outlier score per RGB channel

Outlier Detection on CIFAR10

Adversarial Detection Demos

KFServing MNIST Model with Alibi:Detect VAE Adversarial Detector

https://github.com/SeldonIO/alibi-detect/tree/master/integrations/s amples/kfserving/ad-mnist

KFServing Traffic Signs Model with Alibi:Detect VAE Adversarial Detector

https://github.com/SeldonIO/alibi-detect/tree/master/integrations/s amples/kfserving/ad-signs

Pred original: 26

Adversarial Detection on Traffic Signs

Adversarial Attack, Detection and Defense Mechanisms: Resources

Adversarial Robustness 360 (ART)

https://github.com/IBM/adversarial-robustness-toolbox

ART is a library dedicated to adversarial machine learning. Its purpose is to allow rapid crafting and analysis of **attack, defense and detection methods** for machine learning models. Applicable domains include finance, self driving vehicles etc.

The Adversarial Robustness Toolbox provides an implementation for many state-of-the-art methods for attacking and defending classifiers.

Toolbox: Attacks, defenses, and metrics

Evasion attacks Defense methods Detection methods Robustness metrics

https://art-demo.mybluemix.net/

ART

ADVERSARIAL ROBUSTNESS TOOLBOX (ART)

KubeCon

CloudNativeCon

North America 2019

Summary and Roadmap

Production ML Architecture

Concept Drift

Open Source Projects

 ML Inference KFServing Selden Core 	<pre>https://github.com/kubeflow/kfserving https://github.com/SeldonI0/seldon-core</pre>
 Model Explanations Online Alibit 	https://github.com/coldonic/olibi
 Seldon Alibi IBM AI Explainability 360 	https://github.com/IBM/AIX360
 Outlier and Adversarial Detection and Concept Drift Seldon Alibi-detect 	<u>https://github.com/seldonio/alibi-detect</u>
 Adversarial Attack, Detection and Defense IBM Adversarial Robustness 360 	https://github.com/IBM/adversarial-robustness-toolbox

Related Tech Kubecon Talks

Tuesday, November 19 • 2:25pm - 3:00pm

Introducing KFServing: Serverless Model Serving on Kubernetes - Ellis Bigelow, Google & Dan Sun, Bloomberg

Wednesday, November 20 • 5:20pm - 5:55pm

Serverless Platform for Large Scale Mini-Apps: From Knative to Production - Yitao Dong &

Ke Wang, Ant Financial

Wednesday, November 20 • 11:50am - 12:25pm

From Brownfield to Greenfield: Istio Service Mesh Journey at Freddie Mac - Shriram

Rajagopalan, Tetrate & Lixun Qi, Freddie Mac

Thursday, November 21 • 10:55am - 12:25pm

CloudEvents - Intro, Deep-Dive and More! - Doug Davis, IBM