

Animesh Singh - IBM
Clive Cox - Seldon

Inferencing Leveraging KNative, Istio and
Kubeflow Serving

Agenda

● Introduction to Machine Learning Serving and its challenges

● Kubeflow Serving Introduction

● Monitoring ML Models

● Summary and Roadmap

4

Enterprise Machine
Learning

*Source: Hidden Technical Debt in Machine Learning Systems

Perception

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

*Source: Hidden Technical Debt in Machine Learning Systems

In reality…ML Code is tiny part in
this overall platform

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

Data analysis & Data
prep

Model
creation

Explainability

Rollout

Model

Model

Data

Data

EdgeCloud

M
ar

ke
tp

la
ce

A

I H
u

b
)

D
ata co

n
sisten

cy (versio
n

in
g)

Feature
Engineering

ML Workflow

8

End to end ML on Kubernetes?

● Containers

● Packaging

● Kubernetes service endpoints

● Persistent volumes

● Scaling

● Immutable deployments

● GPUs, Drivers & the GPL

● Cloud APIs

● DevOps

● ...

First, can you become an expert in ...

9

Introducing:Kubeflow

Distributed Model Training and HPO
(TFJob, PyTorch Job, Katib, …)

• Addresses One of the key goals for model builder

persona:

Distributed Model Training and Hyper parameter
optimization for Tensorflow, PyTorch etc.

• Common problems in HP optimization

• Overfitting

• Wrong metrics

• Too few hyperparameters

• Katib: a fully open source, Kubernetes-native

hyperparameter tuning service

• Inspired by Google Vizier

• Framework agnostic

• Extensible algorithms

• Simple integration with other Kubeflow
components

• Kubeflow also supports distributed MPI based training

using Horovod

https://sigopt.com/blog/common-problems-in-hyperparameter-optimization/

Kubeflow Pipelines

▪ Containerized implementations of ML Tasks
▪ Pre-built components: Just provide params or code

snippets (e.g. training code)
▪ Create your own components from code or libraries

▪ Use any runtime, framework, data types

▪ Attach k8s objects - volumes, secrets

▪ Specification of the sequence of steps
▪ Specified via Python DSL
▪ Inferred from data dependencies on input/output

▪ Input Parameters
▪ A “Run” = Pipeline invoked w/ specific parameters
▪ Can be cloned with different parameters

▪ Schedules
▪ Invoke a single run or create a recurring scheduled

pipeline

12

IBM and Seldon
Major Contributors Source devstats.org

Community is growing!

13

Develop
(Jupyter)

Deploy
(KFServing)

Train
(Job CRs)

Build
(Fairing)

Core CUJ

Kubeflow 1.0 Arriving January 2020

http://bit.ly/kf_roadmap

Production Model Serving

Assign Hyperparameters

and Train

❑ Rollouts:
Is this rollout safe? How do I roll
back? Can I test a change
without swapping traffic?

❑ Protocol Standards:
How do I make a prediction?
GRPC? HTTP? Kafka?

❑ Cost:
Is the model over or under scaled?
Are resources being used efficiently?

❑ Monitoring:
Are the endpoints healthy? What is
the performance profile and request
trace?

Prepared
and

Analyzed
Data

Dev
el

op M
odel Train and Tune

Hyperparameters

M
onitor

Deplo
y

Trained
Model

Deployed
Model

Prepared Data

Untrained
Model

❑ Frameworks:
How do I serve on Tensorflow?
XGBoost? Scikit Learn? Pytorch?
Custom Code?

❑ Features:
How do I explain the predictions?
What about detecting outliers and
skew? Bias detection? Adversarial
Detection?

❑ How do I wire up custom pre and
post processing

Production Model Serving?
How hard could it be?

Experts fragmented across industry

● Seldon Core was pioneering Graph Inferencing.
● IBM and Bloomberg were exploring serverless ML lambdas. IBM gave a talk on

the ML Serving with Knative at last KubeCon in Seattle
● Google had built a common Tensorflow HTTP API for models.
● Microsoft Kubernetizing their Azure ML Stack

Putting the pieces together

● Kubeflow created the conditions for collaboration.
● A promise of open code and open community.
● Shared responsibilities and expertise across multiple companies.
● Diverse requirements from different customer segments

Introducing KFServing

KFServing

● Founded by Google, Seldon, IBM, Bloomberg and Microsoft

● Part of the Kubeflow project

● Focus on 80% use cases - single model rollout and update

● Kfserving 1.0 goals:

○ Serverless ML Inference

○ Canary rollouts

○ Model Explanations

○ Optional Pre/Post processing

KFServing Stack

• Event triggered functions on Kubernetes
• Scale to and from zero
• Queue based autoscaling for GPUs and TPUs. KNative autoscaling by default provides inflight requests per pod
• Traditional CPU autoscaling if desired. Traditional scaling hard for disparate devices (GPU, CPU, TPU)

Knative provides a set of building blocks that enable declarative, container-based, serverless workloads
on Kubernetes. Knative Serving provides primitives for serving platforms such as:

KNative

IBM is
2nd largest contributor

Connect: Traffic Control, Discovery,
Load Balancing, Resiliency

Observe: Metrics, Logging, Tracing

Secure: Encryption (TLS),
Authentication, and Authorization of
service-to-service communication

Control: Policy Enforcement

An open service mesh platform to connect, observe, secure, and control microservices.
Founded by Google, IBM and Lyft. IBM is the 2nd largest contributor

Istio

Manages the hosting aspects of your models

• InferenceService - manages the lifecycle of
models

• Configuration - manages history of model
deployments. Two configurations for default
and canary.

• Revision - A snapshot of your model version

• Config and image

• Route - Endpoint and network traffic
management

Route Default
Configuration

Revision 1

Revision M90
%

KFService

Canary
Configuration

Revision 1

Revision N10
%

KFServing: Default and
Canary Configurations

Model Servers

 - TensorFlow

 - Nvidia TRTIS

 - PyTorch

 - XGBoost

 - SKLearn

 - ONNX

 Components:

 - Predictor, Explainer,
Transformer

 Storages

 - AWS/S3

 - GCS

 - Azure Blob

 - PVC

Supported Frameworks, Components
and Storage

The InferenceService architectureconsists of a static graph of components which coordinate requests for a
single model. Advanced features such as Ensembling, A/B testing, and Multi-Arm-Bandits should compose
InferenceServices together.

Inference Service Control
Plane

KFServing Deployment View

- Today’s popular model servers, such as TFServing, ONNX, Seldon,

TRTIS, all communicate using similar but non-interoperable HTTP/gRPC

protocol

- KFServing v1 data plane protocol uses TFServing compatible HTTP API

and introduces explain verb to standardize between model servers,

punt on v2 for gRPC and performance optimization.

KFServing Data Plane Unification

API Verb Path Payload

List Models GET /v1/models [model_names]

Readiness GET /v1/models/<model_name>

Predict POST /v1/models/<model_name>:predict Request: {instances:[]}
Response: {predictions:[]}

Explain POST /v1/models<model_name>:explain Request: {instances:[]}
Response: {predictions:[],
explanations:[]}

KFServing Data Plane v1 protocol

apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "InferenceService"
metadata:
 name: "sklearn-iris"
spec:
 default:

sklearn:
 modelUri: "gs://kfserving-samples/models/sklearn/iris"

apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "InferenceService"
metadata:
 name: "flowers-sample"
spec:
 default:

tensorflow:
 modelUri: "gs://kfserving-samples/models/tensorflow/flowers"

apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "InferenceService"
metadata:
 name: ”pytorch-iris"
spec:
 default:

pytorch:
 modelUri: "gs://kfserving-samples/models/pytorch/iris"

KFServing Examples

apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "KFService"
metadata:
 name: "my-model"
spec:
 default:

90% of traffic is sent to this model
tensorflow:

 modelUri: "gs://mybucket/mymodel-2"
 canaryTrafficPercent: 10
 canary:

10% of traffic is sent to this model
tensorflow:

 modelUri: "gs://mybucket/mymodel-3"

apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "KFService"
metadata:
 name: "my-model"
spec:
 default:

tensorflow:
 modelUri: "gs://mybucket/mymodel-2"
 # Defaults to zero, so can also be omitted or explicitly set to zero.
 canaryTrafficPercent: 0
 canary:

Canary is created but no traffic is directly forwarded.
tensorflow:

 modelUri: "gs://mybucket/mymodel-3"

Canary

Pinned

Canary/Pinned Examples

Demo

Model Serving is accomplished. Can the
predictions be trusted?

Assign Hyperparameters

and Train

Prepared
and

Analyzed
Data

Dev
el

op M
odel Train and Tune

Hyperparameters

M
onitor

Valid
ate

 and D
eplo

y

Trained
Model

Deployed
Model

Prepared Data

Untrained
Model

Can the model explain
its predictions?

Are there concept drifts?

Is there an outlier?

Is the model vulnerable
to adversarial attacks?

Production Machine Learning Serving

Production ML Architecture

InferenceService

logger Broker

Trigger

Outlier
Detection

Alerting

API

Serving

Model

Explainer

Adversarial
Detection

Concept
Drift

Machine Learning Explanations

Why Explain ML Models?

Regulation (GDPR):

[the data subject possesses the right to access] “meaningful information about
the logic involved, as well as the significance and the envisaged consequences of
such processing for the data subject."

Insight:

• Is my model doing what I think it’s doing?
• Investigate model behaviour, e.g. on outliers

ML Explanation Goals

• Human interpretable

• Not over-simplified

• Trade-off between interpretability and fidelity

Local Black Box Explanations

Explain this:

Deny:
p=0.95
Accept:
p=0.05

Age:
23

Occupation:
Bar staff

Postcode:
IV3 5SN

Owns house:
No

Architecture

Model ŷx

e

Explainer ex

X
̂

Ŷ Expensive!

 https://github.com/SeldonIO/alibi

State of the art implementations:

Seldon Alibi:Explain

Janis KlaiseGiovanni Vacanti Alexandru CocaArnaud Van Looveren

• Anchors

• Counterfactuals

• Contrastive explanations

• Trust scores

https://github.com/SeldonIO/alibi
https://uk.linkedin.com/in/giovanni-vacanti-289906102/en

Model

Persian
cat:
p=0.90
Dishwasher
: p=0.003
Notebook:
p=0.002

Precision:
0.95

Explainer

X
̂

Ŷ

Anchors

KfServing Explanations
apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
 name: "income"
spec:
 default:
 predictor:
 sklearn:
 storageUri: "gs://seldon-models/sklearn/income/model"
 explainer:
 alibi:
 type: AnchorTabular
 storageUri: "gs://seldon-models/sklearn/income/explainer"

apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
 name: "moviesentiment"
spec:
 default:
 predictor:
 sklearn:
 storageUri: "gs://seldon-models/sklearn/moviesentiment"
 explainer:
 alibi:
 type: AnchorText

Explanation Demos

Income Prediction SKLearn Classifier and
Alibi:Explain AnchorTabular Explainer

https://github.com/kubeflow/kfserving/blob/master/docs/samples/ex
planation/alibi/income/income_explanations.ipynb

Movie Review RoBERTa Classifier and
Alibi:Explain AnchorText Explainer

https://github.com/SeldonIO/seldon-models/blob/master/pytorch/m
oviesentiment_roberta/inference/kfserving/movie_review_explanation
s.ipynb

Income Model and Explainer

InferenceService

API

Serving

Income Model

Income Explainer

46

AIX360 toolkit is an open-source library to help explain AI and
machine learning models and their predictions. This includes three
classes of algorithms: local post-hoc, global post-hoc, and directly
interpretable explainers for models that use image, text, and
structured/tabular data.

The AI Explainability360 Python package includes a comprehensive
set of explainers, both at global and local level.
Toolbox
Local post-hoc
Global post-hoc
Directly interpretable

http://aix360.mybluemix.net

AI Explainability 360
↳ (AIX360)
https://github.com/IBM/AIX360

Explanations: Resources

AIX360

http://aix360.mybluemix.net

Payload Logging

Payload Logging

Why:
● Capture payloads for analysis and future retraining of the model
● Perform offline processing of the requests and responses

KfServing Implementation (alpha):

● Add to any InferenceService Endpoint: Predictor, Explainer, Transformer
● Log Requests, Responses or Both from the Endpoint
● Simple specify a URL to send the payloads
● URL will receive CloudEvents

POST /event HTTP/1.0
Host: example.com
Content-Type: application/json
ce-specversion: 1.0
ce-type: repo.newItem
ce-source: http://bigco.com/repo
ce-id: 610b6dd4-c85d-417b-b58f-3771e532

<payload>

Payload Logging
apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
 name: "sklearn-iris"
spec:
 default:
 predictor:
 minReplicas: 1
 logger:
 url: http://message-dumper.default/
 mode: all
 sklearn:
 storageUri: "gs://kfserving-samples/models/sklearn/iris"
 resources:
 requests:
 cpu: 0.1

Payload Logging Architecture
Examples

Model

InferenceService

logger

Broker

Trigger

Outlier
Detector Alerting

API

Http kafka
Bridge Kafka Cluster

Serving

ML Inference Analysis

ML Inference Analysis

Don’t trust predictions on instances outside of training distribution!

• Outlier Detection

• Adversarial Detection

• Concept Drift

Outlier Detection
Don’t trust predictions on instances outside of training distribution!

→ Outlier Detection
Detector types:

- stateful online vs. pretrained offline
- feature vs. instance level detectors

Data types:
- tabular, images & time series

Outlier types:
- global, contextual & collective outliers

Adversarial Detection
Don’t trust predictions on instances outside of training distribution!
→ Adversarial Detection

- Outliers w.r.t. the model prediction

- Detect small input changes with a big impact on predictions!

Concept Drift
Production data distribution != training distribution?

→ Concept Drift! Retrain!

Need to track the right distributions:
- feature vs. instance level

- continuous vs. discrete

- online vs. offline training data

- track streaming number of outliers

 https://github.com/SeldonIO/alibi-detect

State of the art implementations:

Seldon Alibi:Detect

Janis KlaiseGiovanni Vacanti Alexandru CocaArnaud Van Looveren

• Outlier Detection

• Adversarial Detection

• Concept Drift (roadmap)

https://github.com/SeldonIO/alibi-detect
https://uk.linkedin.com/in/giovanni-vacanti-289906102/en

Outlier Detection Demo

Outlier image and heatmap of VAE outlier score per RGB channel

KFServing CIFAR10 Model with Alibi:Detect VAE Outlier Detector
https://github.com/SeldonIO/alibi-detect/tree/master/integrations/samples/kfserving/od-cifae10

https://github.com/SeldonIO/alibi-detect/tree/master/integrations/samples/kfserving/od-cifar10

Outlier Detection on CIFAR10

CIFAR10 Model

InferenceService

logger Broker

Trigger

CIFAR10
Outlier Detector

Message
Dumper

API

Serving

Adversarial Detection Demos

KFServing MNIST Model with
Alibi:Detect VAE Adversarial Detector

https://github.com/SeldonIO/alibi-detect/tree/master/integrations/s
amples/kfserving/ad-mnist

KFServing Traffic Signs Model with
Alibi:Detect VAE Adversarial Detector

https://github.com/SeldonIO/alibi-detect/tree/master/integrations/s
amples/kfserving/ad-signs

https://github.com/SeldonIO/alibi-detect/tree/master/integrations/samples/kfserving/ad-mnist
https://github.com/SeldonIO/alibi-detect/tree/master/integrations/samples/kfserving/ad-mnist
https://github.com/SeldonIO/alibi-detect/tree/master/integrations/samples/kfserving/ad-signs
https://github.com/SeldonIO/alibi-detect/tree/master/integrations/samples/kfserving/ad-signs

Adversarial Detection on Traffic Signs

Traffic Signs Model

InferenceService

logger Broker

Trigger

Traffic Signs
Adversarial Detector

Message
Dumper

API

Serving

•

61

Adversarial Robustness 360
↳ (ART)

ART is a library dedicated to adversarial machine learning. Its
purpose is to allow rapid crafting and analysis of attack, defense
and detection methods for machine learning models. Applicable
domains include finance, self driving vehicles etc.

The Adversarial Robustness Toolbox provides an implementation
for many state-of-the-art methods for attacking and defending
classifiers.

https://github.com/IBM/adversarial-robustness-toolbox

Toolbox: Attacks, defenses, and metrics
Evasion attacks
Defense methods
Detection methods
Robustness metrics

ART

https://art-demo.mybluemix.net/

Adversarial Attack, Detection and
Defense Mechanisms: Resources

https://art-demo.mybluemix.net/

Summary and Roadmap

Production ML Architecture

InferenceService

logger Broker

Trigger

Outlier
Detection

Alerting

API

Serving

Model

Explainer

Adversarial
Detection

Concept
Drift

Open Source Projects

● ML Inference
○ KFServing
○ Seldon Core

https://github.com/kubeflow/kfserving

https://github.com/SeldonIO/seldon-core

● Model Explanations
○ Seldon Alibi

○ IBM AI Explainability 360

https://github.com/seldonio/alibi

https://github.com/IBM/AIX360

● Outlier and Adversarial Detection and
Concept Drift

○ Seldon Alibi-detect

https://github.com/seldonio/alibi-detect

● Adversarial Attack, Detection and Defense
○ IBM Adversarial Robustness 360

https://github.com/IBM/adversarial-robustness-toolbox

https://github.com/kubeflow/kfserving
https://github.com/SeldonIO/seldon-core
https://github.com/seldonio/alibi
https://github.com/IBM/AIX360
https://github.com/seldonio/alibi-detect
https://github.com/IBM/adversarial-robustness-toolbox

Related Tech Kubecon Talks

