
Serverless Is Interesting
But FaaS Is Not Enough

Jonas Bonér
@jboner

Towards
Stateful

Serverless

 Alternative Title

Jonas Bonér
@jboner

Industry Trends
1. New World: Multicore, Cloud, Mobile, IoT, Big Data, AI
2. Towards Real-time Data-centric Streaming applications
3. Towards a world with automated Operations: Opsless

Reactive Systems
The rules of the game Have changed

Reactive Manifesto - reactivemanifesto.org

Towards Fast Data
Real-time, Data-centric, Event-driven

“We predict that Serverless Computing will grow
to dominate the future of Cloud Computing.”

- Berkeley CS Department

Cloud computing simplified: a Berkeley view on serverless computing

Serverless is all about the

Developer experience

Serverless is all about the

Developer experience
1. Cost and resource efficient—scale down to zero
2. Pay as you go—scale up on demand
3. Automation—of scale, failure handling, and recovery
4. Supporting the full dev cycle—dev, build, CI, prod

Serverless ≠Faas

FaaS = Function-as-a-Service

Faas
Why Should we let

have all the

fun?

what’s Good With

FaaS?

what’s Good With

FaaS?

what’s Good With

FaaS?
1. Paved the way for the Serverless Developer Experience

what’s Good With

FaaS?
1. Paved the way for the Serverless Developer Experience
2. Scaling on-demand from 0 to 10000s request, in a cost-efficient manner

what’s Good With

FaaS?
1. Paved the way for the Serverless Developer Experience
2. Scaling on-demand from 0 to 10000s request, in a cost-efficient manner
3. Simplifies delivery of scalable and available applications

what’s Good With

FaaS?
1. Paved the way for the Serverless Developer Experience
2. Scaling on-demand from 0 to 10000s request, in a cost-efficient manner
3. Simplifies delivery of scalable and available applications
4. Encourages good distributed systems design (events-first, loose coupling, etc.)

what’s Good With

FaaS?
1. Paved the way for the Serverless Developer Experience
2. Scaling on-demand from 0 to 10000s request, in a cost-efficient manner
3. Simplifies delivery of scalable and available applications
4. Encourages good distributed systems design (events-first, loose coupling, etc.)
5. Great as integration layer between various (ephemeral and durable) data sources

what’s Good With

FaaS?
1. Paved the way for the Serverless Developer Experience
2. Scaling on-demand from 0 to 10000s request, in a cost-efficient manner
3. Simplifies delivery of scalable and available applications
4. Encourages good distributed systems design (events-first, loose coupling, etc.)
5. Great as integration layer between various (ephemeral and durable) data sources
6. Great for stateless & processing-centric workloads

what’s Good With

FaaS?
1. Paved the way for the Serverless Developer Experience
2. Scaling on-demand from 0 to 10000s request, in a cost-efficient manner
3. Simplifies delivery of scalable and available applications
4. Encourages good distributed systems design (events-first, loose coupling, etc.)
5. Great as integration layer between various (ephemeral and durable) data sources
6. Great for stateless & processing-centric workloads
7. Great as data backbone moving data from A to B, transforming it along the way

Use-cases For

FaaS?

Use-cases For

FaaS?
Use-cases where throughput is key rather than low latency

and requests can be completed in a short time window

Use-cases For

FaaS?
Use-cases where throughput is key rather than low latency

and requests can be completed in a short time window
1. Low traffic applications—enterprise IT services, and spiky workloads

Use-cases For

FaaS?
Use-cases where throughput is key rather than low latency

and requests can be completed in a short time window
1. Low traffic applications—enterprise IT services, and spiky workloads
2. Stateless web applications—serving static content form S3 (or similar)

Use-cases For

FaaS?
Use-cases where throughput is key rather than low latency

and requests can be completed in a short time window
1. Low traffic applications—enterprise IT services, and spiky workloads
2. Stateless web applications—serving static content form S3 (or similar)
3. Embarrassingly parallel processing tasks—invoked on demand & intermittently, e.g.
resizing images, object recognition, log analysis

Use-cases For

FaaS?
Use-cases where throughput is key rather than low latency

and requests can be completed in a short time window
1. Low traffic applications—enterprise IT services, and spiky workloads
2. Stateless web applications—serving static content form S3 (or similar)
3. Embarrassingly parallel processing tasks—invoked on demand & intermittently, e.g.
resizing images, object recognition, log analysis

4. Orchestration functions—integration/coordination of calls to third-party services

Use-cases For

FaaS?
Use-cases where throughput is key rather than low latency

and requests can be completed in a short time window
1. Low traffic applications—enterprise IT services, and spiky workloads
2. Stateless web applications—serving static content form S3 (or similar)
3. Embarrassingly parallel processing tasks—invoked on demand & intermittently, e.g.
resizing images, object recognition, log analysis

4. Orchestration functions—integration/coordination of calls to third-party services
5. Composing chains of functions—stateless workflow management, connected via
data dependencies

Use-cases For

FaaS?
Use-cases where throughput is key rather than low latency

and requests can be completed in a short time window
1. Low traffic applications—enterprise IT services, and spiky workloads
2. Stateless web applications—serving static content form S3 (or similar)
3. Embarrassingly parallel processing tasks—invoked on demand & intermittently, e.g.
resizing images, object recognition, log analysis

4. Orchestration functions—integration/coordination of calls to third-party services
5. Composing chains of functions—stateless workflow management, connected via
data dependencies

6. Job scheduling—CRON jobs, triggers, etc.

what’s Bad With

FaaS?

what’s Bad With

FaaS?
 Hard to build general-purpose applications

what’s Bad With

FaaS?
 Hard to build general-purpose applications

1. Retains the limitations of the 3-tier architecture

what’s Bad With

FaaS?
 Hard to build general-purpose applications

1. Retains the limitations of the 3-tier architecture
2. Functions are stateless, ephemeral, and short-lived

what’s Bad With

FaaS?
 Hard to build general-purpose applications

1. Retains the limitations of the 3-tier architecture
2. Functions are stateless, ephemeral, and short-lived
3. No direct addressability

what’s Bad With

FaaS?
 Hard to build general-purpose applications

1. Retains the limitations of the 3-tier architecture
2. Functions are stateless, ephemeral, and short-lived
3. No direct addressability
4. No co-location of state and processing

what’s Bad With

FaaS?
 Hard to build general-purpose applications

1. Retains the limitations of the 3-tier architecture
2. Functions are stateless, ephemeral, and short-lived
3. No direct addressability
4. No co-location of state and processing
5. Limited options for managing and coordinating distributed state

what’s Bad With

FaaS?
 Hard to build general-purpose applications

1. Retains the limitations of the 3-tier architecture
2. Functions are stateless, ephemeral, and short-lived
3. No direct addressability
4. No co-location of state and processing
5. Limited options for managing and coordinating distributed state
6. Limited options for modelling various consistency guarantees

what’s Bad With

FaaS?
 Hard to build general-purpose applications

1. Retains the limitations of the 3-tier architecture
2. Functions are stateless, ephemeral, and short-lived
3. No direct addressability
4. No co-location of state and processing
5. Limited options for managing and coordinating distributed state
6. Limited options for modelling various consistency guarantees
7. Limited options for managing durable state, that is scalable and available

• The Serverless DX—but for general-purpose applications,
including modern Fast Data and Reactive systems

• Stateful functions—complementing stateless functions,
expanding the toolbox and supported use-cases

• The cost efficiencies of FaaS—while allowing the user to
dial in trade-offs (related to cost, SLOs, use-cases)

What We Want

• Training and Serving of Machine Learning Models
• Any dynamic in-memory model that needs to build up and served with low latency

• Real-time Distributed Stream Processing
• E.g. Real-time Prediction/Recommendation Serving, Anomaly Detection

• User Sessions, Shopping Carts, Caching
• Managing in-memory, yet durable, session state across individual requests

• Transaction Management
• Saga Pattern, Workflow Orchestration, Rollback/Compensating Actions

• Shared Collaborative Workspaces
• Collaborative Document Editing, Blackboards, Chat Rooms, etc.

• Leader Election
• …and other standard distributed systems patterns/protocols for coordination

Support For Use Cases Like

Technical Requirements

1. Stateful long-lived addressable virtual components (actors)

Technical Requirements

1. Stateful long-lived addressable virtual components (actors)
2. Wide range of options for distributed coordination &
communication patterns

Technical Requirements

1. Stateful long-lived addressable virtual components (actors)
2. Wide range of options for distributed coordination &
communication patterns

3. Options for managing distributed state reliably at scale, ranging
from strong to eventual consistency (durable/ephemeral)

Technical Requirements

1. Stateful long-lived addressable virtual components (actors)
2. Wide range of options for distributed coordination &
communication patterns

3. Options for managing distributed state reliably at scale, ranging
from strong to eventual consistency (durable/ephemeral)

4. Intelligent adaptive placement of stateful functions (co-location)

Technical Requirements

1. Stateful long-lived addressable virtual components (actors)
2. Wide range of options for distributed coordination &
communication patterns

3. Options for managing distributed state reliably at scale, ranging
from strong to eventual consistency (durable/ephemeral)

4. Intelligent adaptive placement of stateful functions (co-location)
5. Ways of managing end-to-end guarantees and correctness

Technical Requirements

1. Stateful long-lived addressable virtual components (actors)
2. Wide range of options for distributed coordination &
communication patterns

3. Options for managing distributed state reliably at scale, ranging
from strong to eventual consistency (durable/ephemeral)

4. Intelligent adaptive placement of stateful functions (co-location)
5. Ways of managing end-to-end guarantees and correctness
6. Predictable performance, latency, and throughput—in startup
time, communication/coordination, and storage of data

Technical Requirements

User Function

Deployment

FaaS
Serverless 1.0

Message In User Function

Deployment

FaaS
Serverless 1.0

Message In User Function

Deployment

Message Out

FaaS
Serverless 1.0

Message In User Function

Deployment

Message Out

FaaS With CRUD

Message In User Function

Deployment

Database

Message Out

FaaS With CRUD

Message In User Function

Deployment

Database

Message Out

Not Serverless
In An Ideal World

Unconstrained
database access
Makes it hard to

Automate
operations

“Constraints liberate, liberties constrain.”
- Runar Bjarnason

Message In

User Function

Deployment

Message Out

Stateful
Serverless

Message In

User Function

Deployment

Message Out

Stateful
Serverless

State In

Message In

User Function

Deployment

Message Out

Stateful
Serverless

State In State Out

We Need Better Models
For Distributed State

A couple of battle-tested, Yet Constrained, models are:

We Need Better Models
For Distributed State

A couple of battle-tested, Yet Constrained, models are:

We Need Better Models
For Distributed State

Event
Sourcing CRDTs&

Event
Sourced
Functions

Happy Path

Event
Sourced
Functions

Happy Path

Command

Event
Sourced
Functions

Happy Path

Command

Event
Sourced
Functions

Happy Path

Command

Event
Sourced
Functions

Happy Path

Command

Command

Event
Log

Event

Event
Sourced
Functions

Happy Path

Command

Command

Event

Event
Log

Event

Event
Sourced
Functions

Happy Path

Command

Command

Event

Event
Log

Event

Event
Sourced
Functions

Happy Path

Command

Memory Image

Event
Sourced
Functions

Happy Path

SAD Path, RECOVER FROM FAILURE

Event
Sourced
Functions

Event
Log

SAD Path, RECOVER FROM FAILURE

Event
Sourced
Functions

Event
Log

REPLAY EventS

SAD Path, RECOVER FROM FAILURE

Event
Sourced
Functions

ACID 2.0

ACID 2.0
Associative
Batch-insensitive

(grouping doesn't matter)
a+(b+c)=(a+b)+c

ACID 2.0
Associative
Batch-insensitive

(grouping doesn't matter)
a+(b+c)=(a+b)+c

Commutative
Order-insensitive

(order doesn't matter)
a+b=b+a

ACID 2.0
Associative
Batch-insensitive

(grouping doesn't matter)
a+(b+c)=(a+b)+c

Commutative
Order-insensitive

(order doesn't matter)
a+b=b+a

Idempotent
Retransmission-insensitive
(duplication does not matter)

a+a=a

Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011

Conflict-Free Replicated Data Types

CRDT
ACID 2.0
Strong Eventual Consistency
Replicated & Decentralized
Always Converge Correctly
Monotonic Merge Function
Highly Available & Scalable

Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011

Conflict-Free Replicated Data Types

Data types
Counters
Registers

Sets
Maps

Graphs
(that all compose)

CRDT
ACID 2.0
Strong Eventual Consistency
Replicated & Decentralized
Always Converge Correctly
Monotonic Merge Function
Highly Available & Scalable

Convergent & Commutative Replicated Data Types - Shapiro et. al. 2011

Conflict-Free Replicated Data Types

Command In

User Function

Deployment

Reply Out

Event Log In Events OUt

Serverless

Event Sourcing

Message In

User Function

Deployment

Message Out

States/Deltas IN States/deltas OUT

Serverless

CRDTs

So, What are we

Doing
About it?

Serving of Stateful Functions

Knative stateful serving

Serving of Stateful Functions

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Knative stateful serving

Serving of Stateful Functions

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Knative stateful serving

User Function
(JavaScript, Go, Java,…)

Serving of Stateful Functions
User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Knative stateful serving

User Function
(JavaScript, Go, Java,…)

Serving of Stateful Functions
User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Knative stateful serving

User Function
(JavaScript, Go, Java,…)

Serving of Stateful Functions
User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

gRPC

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Knative stateful serving

User Function
(JavaScript, Go, Java,…)

Serving of Stateful Functions
User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Distributed Datastore
(Cassandra, DynamoDB, Spanner,…)

gRPC

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Knative stateful serving

Knative Events

User Function
(JavaScript, Go, Java,…)

Serving of Stateful Functions
User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Distributed Datastore
(Cassandra, DynamoDB, Spanner,…)

gRPC

What is Akka?

✴Cloud Native, Reactive, Distributed Systems Runtime
➡ Implementation of the Actor Model—Concurrency and Distribution
➡ Decentralized, Self-Organizing, Peer-to-peer Service Mesh
➡ Autonomous, Self-healing, Event-driven Services

What is Akka?

✴Cloud Native, Reactive, Distributed Systems Runtime
➡ Implementation of the Actor Model—Concurrency and Distribution
➡ Decentralized, Self-Organizing, Peer-to-peer Service Mesh
➡ Autonomous, Self-healing, Event-driven Services

✴ High Performance, High Throughput, and Low Latency
➡ Communication: Point-to-Point, Pub-Sub, and Streaming
➡ Protocols: HTTP, TCP, Aeron (UDP), Kafka, Reactive Streams, gRPC

What is Akka?

✴Cloud Native, Reactive, Distributed Systems Runtime
➡ Implementation of the Actor Model—Concurrency and Distribution
➡ Decentralized, Self-Organizing, Peer-to-peer Service Mesh
➡ Autonomous, Self-healing, Event-driven Services

✴ High Performance, High Throughput, and Low Latency
➡ Communication: Point-to-Point, Pub-Sub, and Streaming
➡ Protocols: HTTP, TCP, Aeron (UDP), Kafka, Reactive Streams, gRPC

✴ Distributed State Management
➡ CRDTs, Event Sourcing, CQRS
➡ Multi-Datacenter Clustering and Log Replication

What is Akka?

✴Cloud Native, Reactive, Distributed Systems Runtime
➡ Implementation of the Actor Model—Concurrency and Distribution
➡ Decentralized, Self-Organizing, Peer-to-peer Service Mesh
➡ Autonomous, Self-healing, Event-driven Services

✴ High Performance, High Throughput, and Low Latency
➡ Communication: Point-to-Point, Pub-Sub, and Streaming
➡ Protocols: HTTP, TCP, Aeron (UDP), Kafka, Reactive Streams, gRPC

✴ Distributed State Management
➡ CRDTs, Event Sourcing, CQRS
➡ Multi-Datacenter Clustering and Log Replication

✴ Find out more at: akka.io

What is Akka?

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Knative stateful serving

User Function
(JavaScript, Go, Java,…)

Powered by Akka Cluster Sidecars

User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Distributed Datastore
(Cassandra, DynamoDB, Spanner,…)

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Knative stateful serving

User Function
(JavaScript, Go, Java,…)

Powered by Akka Cluster Sidecars

User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Akka Sidecar

Akka Sidecar

Akka Sidecar

Distributed Datastore
(Cassandra, DynamoDB, Spanner,…)

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Knative stateful serving

User Function
(JavaScript, Go, Java,…)

Powered by Akka Cluster Sidecars

User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Akka Sidecar

Akka Sidecar

Akka Sidecar

Distributed Datastore
(Cassandra, DynamoDB, Spanner,…)

gRPC

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Knative stateful serving

User Function
(JavaScript, Go, Java,…)

Powered by Akka Cluster Sidecars

User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Distributed Datastore
(Cassandra, DynamoDB, Spanner,…)

gRPC

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Knative stateful serving

User Function
(JavaScript, Go, Java,…)

Powered by Akka Cluster Sidecars

User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Akka Sidecar

Akka Sidecar

Akka Sidecar

Akka Cluster

Distributed Datastore
(Cassandra, DynamoDB, Spanner,…)

gRPC

1. The Serverless DX is revolutionary and will grow to dominate the
future of Cloud Computing

2. FaaS is a good first step, but with limited addressable use-cases
3. Serverless 2.0 needs a runtime & programming model  
 for general-purpose application development

4. We have started building it with Knative, Akka, and gRPC
5. We need your help

In Summary

bit.ly/stateful-serverless-intro
github.com/lightbend/stateful-serverless

Get Involved

http://bit.ly/stateful-serverless-intro
http://github.com/lightbend/stateful-serverless

Thank
You

Jonas Bonér
@jboner

