N

\

W

\
\
W\

N\
\
\\
\

/M’ ﬂ/

Jonas Bonér

Lightbend

Jonas Boner

Lightbend

New World: Multicore, Cloud, Mobile, loT, Big Data, Al
Towards Real-time Data-centric Streaming applications
Towards a world with automated Operations: Opsless

THE RULES OF THE GAME HAVE CHANGED

Reactive Manifesto - reactivemanifesto.org

EVENT-DRIVEN

Increasing requirements for streaming vs. batch

AN
(o

\

REAL-TIME, DATA-CENTRIC

(]
O
C
s
‘»
(O]
S
(%]
>
o
el
1Ly
©
O
(%]
—
1)
(%]
)
(=
()
=
()
=
>
O
(O]
S
oo
=
(7]
©
()
-
O
=

(2]
(]
O
>
-
(]
(%]
(@]
=
O
=
>
0
©
()
>
(-
(]
(V]
(o1))]
=
(]
0
(O]
—
©
(7]
()
=
o
ges
o
©
-
O
o]
oo
=
=
(48]
(O]
S
7
(Vp)

“We predict that Serverless Computing will grow
to dominate the future of Cloud Computing.”

Cloud computing simplified: a Berkeley view on serverless computing

DEVELOPER EXPERIENGE

DEVELOPER EXPERIENGE

Cost and resource efficient
Pay as you o

Automation

Supporting the full dev cycle

SERVERLESS FAAS

FaaS = Function-as-a-Service

FAAS

Paved the way for the Serverless Developer Experience

FAAS

Paved the way for the Serverless Developer Experience
Scaling on-demand from 0 to 10000s request, in a cost-efficient manner

FAAS

Paved the way for the Serverless Developer Experience
Scaling on-demand from 0 to 10000s request, in a cost-efficient manner
Simplifies delivery of scalable and available applications

FAAS

Paved the way for the Serverless Developer Experience

Scaling on-demand from 0 to 10000s request, in a cost-efficient manner
Simplifies delivery of scalable and available applications

Encourages good distributed systems design (events-first, loose coupling, etc.)

FAAS

Paved the way for the Serverless Developer Experience

Scaling on-demand from 0 to 10000s request, in a cost-efficient manner
Simplifies delivery of scalable and available applications

Encourages good distributed systems design (events-first, loose coupling, etc.)
Great as integration layer between various (ephemeral and durable) data sources

FAAS

Paved the way for the Serverless Developer Experience

Scaling on-demand from 0 to 10000s request, in a cost-efficient manner
Simplifies delivery of scalable and available applications

Encourages good distributed systems design (events-first, loose coupling, etc.)
Great as integration layer between various (ephemeral and durable) data sources
Great for stateless & processing-centric workloads

FAAS

Paved the way for the Serverless Developer Experience

Scaling on-demand from 0 to 10000s request, in a cost-efficient manner
Simplifies delivery of scalable and available applications

Encourages good distributed systems design (events-first, loose coupling, etc.)
Great as integration layer between various (ephemeral and durable) data sources
Great for stateless & processing-centric workloads

Great as data backbone moving data from A to B, transforming it along the way

FAAS

throughput is key
completed in a short time

FAAS

throughput is key
completed in a short time

Low traffic applications

FAAS

throughput is key
completed in a short time

Low traffic applications
Stateless web applications

FAAS

throughput is key
completed in a short time

Low traffic applications
Stateless web applications
Embarrassingly parallel processing tasks

FAAS

throughput is key
completed in a short time

Low traffic applications
Stateless web applications
Embarrassingly parallel processing tasks

Orchestration functions

FAAS

throughput is key
completed in a short time

Low traffic applications
Stateless web applications
Embarrassingly parallel processing tasks

Orchestration functions
Composing chains of functions

FAAS

throughput is key
completed in a short time

Low traffic applications
Stateless web applications
Embarrassingly parallel processing tasks

Orchestration functions
Composing chains of functions

Job scheduling

genera |-purpose

FAAS

general-purpose

Retains the limitations of the 3-tier architecture

FAAS

general-purpose

Retains the limitations of the 3-tier architecture
Functions are stateless, ephemeral, and short-lived

FAAS

general-purpose

Retains the limitations of the 3-tier architecture
Functions are stateless, ephemeral, and short-lived
No direct addressability

FAAS

general-purpose

Retains the limitations of the 3-tier architecture
Functions are stateless, ephemeral, and short-lived
No direct addressability

No co-location of state and processing

FAAS

general-purpose

Retains the limitations of the 3-tier architecture

Functions are stateless, ephemeral, and short-lived

No direct addressability

No co-location of state and processing

Limited options for managing and coordinating distributed state

FAAS

general-purpose

Retains the limitations of the 3-tier architecture

Functions are stateless, ephemeral, and short-lived

No direct addressability

No co-location of state and processing

Limited options for managing and coordinating distributed state
Limited options for modelling various consistency guarantees

FAAS

general-purpose

Retains the limitations of the 3-tier architecture

Functions are stateless, ephemeral, and short-lived

No direct addressability

No co-location of state and processing

Limited options for managing and coordinating distributed state

Limited options for modelling various consistency guarantees

Limited options for managing durable state, that is scalable and available

N N

—nhut for general-purpose applications,

Including modern Fast Data and Reactive systems

—complementing stateless functions,

expanding the toolbox and supported use-cases

—while allowing the user to

offs (related to cost, SLOs

use-cases)

dial in trade

® Any dynamic in-memory model that needs to build up and served with low latency
®

® E.g. Real-time Prediction/Recommendation Serving, Anomaly Detection
®

e Managing in-memory, yet durable, session state across individual requests
®

e Saga Pattern, Workflow Orchestration, Rollback/Compensating Actions
®

® Collaborative Document Editing, Blackboards, Chat Rooms, etc.
®

® _..and other standard distributed systems patterns/protocols for coordination

Stateful long-lived addressable virtual components (actors)

Stateful long-lived addressable virtual components (actors)
Wide range of options for distributed coordination &
communication patterns

Stateful long-lived addressable virtual components (actors)

Wide range of options for distributed coordination &
communication patterns

Options for managing distributed state reliably at scale, ranging
from strong to eventual consistency (durable/ephemeral)

Stateful long-lived addressable virtual components (actors)

Wide range of options for distributed coordination &
communication patterns

Options for managing distributed state reliably at scale, ranging
from strong to eventual consistency (durable/ephemeral)

Intelligent adaptive placement of stateful functions (co-location)

Stateful long-lived addressable virtual components (actors)

Wide range of options for distributed coordination &
communication patterns

Options for managing distributed state reliably at scale, ranging
from strong to eventual consistency (durable/ephemeral)

Intelligent adaptive placement of stateful functions (co-location)

Ways of managing end-to-end guarantees and correctness

Stateful long-lived addressable virtual components (actors)

Wide range of options for distributed coordination &
communication patterns

Options for managing distributed state reliably at scale, ranging
from strong to eventual consistency (durable/ephemeral)

Intelligent adaptive placement of stateful functions (co-location)

Ways of managing end-to-end guarantees and correctness

Predictable performance, latency, and throughput—in startup
time, communication/coordination, and storage of data

DEPLOYMENT

USER FUNCTION

DEPLOYMENT

USER FUNCTION

DEPLOYMENT

USER FUNCTION MESSAGE OUT

T
—
Ll
—
S
S
L
.
Ll
=

MESSAGE OUT

USER FUNCTION

T
—
Ll
—
S
S
L
.
Ll
=

MESSAGE OUT

USER FUNCTION

DATABASE

MESSAGE OUT

DEPLOYMENT

USER FUNCTION

MAKES IT HARD T0

AUTOMATE
OPERATIONS

“Constraints liberate, liberties constrain.”

MESSAGE OUT

=
= —
o x
— =
W -
ﬂ | .
b 0
= 7]

—

MESSAGE OUT

=
= —
o x
— =
W -
ﬂ | .
b 0
= 7]

—

MESSAGE OUT
STATE OUT

=
= —
o x
— =
W -
ﬂ | .
b 0
= 7]

—

A COUPLE OF BATTLE-TESTED, YET CONSTRAINED, MODELS ARE

CRDTs

Event
sourcing

HAPPY PATH

HAPPY PATH

HAPPY PATH

HAPPY PATH

HAPPY PATH

EVENT

HAPPY PATH

-
—
L
—
L

HAPPY PATH

HAPPY PATH

SAD PATH, RECOVER FROM FAILURE

SAD PATH, RECOVER FROM FAILURE

(7]
o
—
Ll
—
Ll
—
=T
—
(=0
Ll
(=

SAD PATH, RECOVER FROM FAILURE

ACID

Batch-insensitive
(grouping doesn't matter)

2.0

Batch-insensitive Order-insensitive
(grouping doesn't matter) (order doesn't matter)

2.0

Batch-insensitive Order-insensitive Retransmission-insensitive
(grouping doesn't matter) (order doesn't matter) (duplication does not matter)

CONFLICT-FREE REPLICATED DATA TYPES

CONFLICT-FREE REPLICATED DATA TYPES

GRDT

CONFLICT-FREE REPLICATED DATA TYPES

c R DT DATA TYPES

DEPLOYMENT

[—
-
o
=
(=
L
(= =

USER FUNCTION

EVENTS OUT

EVENT LOG IN

MESSAGE OUT
STATES/DELTAS OUT

=
= —
o x
— =
W -
ﬂ | .
b 0
= 7]

—

STATES/DELTAS IN

STATEFUL FUNCTIONS

STATEFUL FUNCTIONS

STATEFUL FUNCTIONS

STATEFUL FUNCTIONS

KUBERNETES POD

KNATIVE STATEFUL SERVING ot Go.Java. KUBERNETES POD

KUBERNETES POD

STATEFUL FUNCTIONS

KUBERNETES POD

8§ KNATIVE STATEFUL SERVING KUBERNETES POD

KUBERNETES POD

STATEFUL FUNCTIONS

KUBERNETES POD

X | KNATIVE STATEFUL SERVING | KUBERNETES POD

KUBERNETES POD

STATEFUL FUNCTIONS

KUBERNETES POD

X | KNATIVE STATEFUL SERVING | KUBERNETES POD

KUBERNETES POD

DISTRIBUTED DATASTORE

(Cassandra, DynamoDB, Spanner....)

STATEFUL FUNCTIONS

KUBERNETES POD

X | KNATIVE STATEFUL SERVING | KUBERNETES POD

KUBERNETES POD

KNATIVE EVENTS DISTRIBUTED DATASTORE

(Cassandra, DynamoDB, Spanner....)

WHAT IS A

AKKA?

Cloud Native, Reactive, Distributed Systems Runtime

Implementation of the Actor Model—Concurrency and Distribution
Decentralized, Self-Organizing, Peer-to-peer Service Mesh
Autonomous, Self-healing, Event-driven Services

AKKA?

Cloud Native, Reactive, Distributed Systems Runtime

Implementation of the Actor Model—Concurrency and Distribution
Decentralized, Self-Organizing, Peer-to-peer Service Mesh
Autonomous, Self-healing, Event-driven Services

High Performance, High Throughput, and Low Latency

Communication: Point-to-Point, Pub-Sub, and Streaming
Protocols: HTTP. TCP. Aeron (UDP), Kafka, Reactive Streams, gRPC

AKKA?

Cloud Native, Reactive, Distributed Systems Runtime

Implementation of the Actor Model—Concurrency and Distribution
Decentralized, Self-Organizing, Peer-to-peer Service Mesh
Autonomous, Self-healing, Event-driven Services

High Performance, High Throughput, and Low Latency

Communication: Point-to-Point, Pub-Sub, and Streaming
Protocols: HTTP. TCP. Aeron (UDP), Kafka, Reactive Streams, gRPC

Distributed State Management

CRDTs, Event Sourcing, CARS
Multi-Datacenter Clustering and Log Replication

AKKA?

Cloud Native, Reactive, Distributed Systems Runtime

Implementation of the Actor Model—Concurrency and Distribution
Decentralized, Self-Organizing, Peer-to-peer Service Mesh
Autonomous, Self-healing, Event-driven Services

High Performance, High Throughput, and Low Latency

Communication: Point-to-Point, Pub-Sub, and Streaming
Protocols: HTTP. TCP. Aeron (UDP), Kafka, Reactive Streams, gRPC

Distributed State Management

CRDTs, Event Sourcing, CARS
Multi-Datacenter Clustering and Log Replication

Find out more at: akka.lo

AKKA CLUSTER

KNATIVE STATEFUL SERVING

KUBERNETES POD

KUBERNETES POD

KUBERNETES POD

DISTRIBUTED DATASTORE

(Cassandra, DynamoDB, Spanner....)

AKKA CLUSTER

KUBERNETES POD

‘ AKKA SIDECAR
‘ AKKA SIDECAR
‘ AKKA SIDECAR

KUBERNETES POD

KUBERNETES POD

DISTRIBUTED DATASTORE

(Cassandra, DynamoDB, Spanner....)

AKKA CLUSTER

AKKA SIDECAR _ KUBERNETES POD
AKKA SIDECAR _ KUBERNETES POD

AKKA SIDECAR _ KUBERNETES POD

DISTRIBUTED DATASTORE

(Cassandra, DynamoDB, Spanner....)

AKKA CLUSTER

KUBERNETES POD
KUBERNETES POD

KUBERNETES POD

DISTRIBUTED DATASTORE

(Cassandra, DynamoDB, Spanner....)

AKKA CLUSTER

KUBERNETES POD
KUBERNETES POD

KUBERNETES POD

DISTRIBUTED DATASTORE

(Cassandra, DynamoDB, Spanner....)

The Serverless DX is revolutionary and will grow to dominate the

future of Cloud Computing
Faas is a good first step, but with limited addressable use-cases

Serverless 2.0 needs a runtime & programming model
for general-purpose application development

We have started building it with Knative, Akka, and gRPC
We need your help

bit.ly/stateful-serverless-intro

qithub.com/lightbend/stateful-serverless

http://bit.ly/stateful-serverless-intro
http://github.com/lightbend/stateful-serverless

Jonas Boner

!Lightbend

