


Ready? A Deep Dive into Pod Readiness 
Gates for Service Health Management
Minhan Xia, Software Engineer, Google
Ping Zou, Software Engineer, Intuit



● Pod Status Recap
● Pod ReadinessGate Intro
● Kubernetes Engine Use Case
● Foremast Use Case

Agenda



Pod Status Recap



Container Status

kind: Pod

apiVersion: v1

metadata:

  ...

spec:

  ...

status:

  ...

  containerStatuses:

  - containerID: docker://xxxxxxxxxxxxxxxxxxxxx

    image: k8s.gcr.io/busybox

    imageID: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

    name: example

    ready: true

    restartCount: 0

    state:

      running:

        startedAt: "2019-05-21T00:00:00Z"

  ...



Container Status

kind: Pod

apiVersion: v1

metadata:

  ...

spec:

  containers:

  - name: example

    livenessProbe:

      exec:

      command:

      - cat

      - /tmp/running

      initialDelaySeconds: 5

      periodSeconds: 5

    readinessProbe:

tcpSocket:

        port: 8080

      initialDelaySeconds: 5

      periodSeconds: 10

  ...

  

Restart Container

Pod Readiness



Pod Status

kind: Pod

apiVersion: v1

metadata:

  ...

spec:

  ...

status:

  conditions

    - type: PodScheduled

      status: "True"

      lastTransitionTime: "2019-05-21T00:00:00Z" 

    - type: Initialized

      status: "True"

      lastTransitionTime: "2019-05-21T00:00:10Z"

    - type: Ready

      status: "True"

      lastTransitionTime: "2019-05-21T00:01:00Z"

      ...

  phase: Running

  ...

all containers are ready

all init containers have started successfully

Pod has been scheduled to a node



Pod LifeCycle

readiness

Draining traffic

start container 
ready

pod
ready

stopping terminated

Serving traffic

liveness

liveness

readiness

pod

container 1

container 2



Pod Readiness

  All Containers are ready
=
  Pod is ready
=
  Pod is ready to serve traffic
=
 ?



Pod Readiness Consumer: Workload

kind: Deployment

metadata:

  ...

spec:

  replicas: 10

  strategy:

    rollingUpdate:

      maxSurge: 1

      maxUnavailable: 1

    type: RollingUpdate

  ...



Deployment Rolling Update

kind: Deployment

metadata:

  generation: 2

  ...

spec:

  replicas: 10

  strategy:

    rollingUpdate:

      maxSurge: 1

      maxUnavailable: 1

    type: RollingUpdate

  ...

kind: ReplicaSet

metadata:

  generation: 1

  ...

spec:

  replicas: 5

  ...

kind: ReplicaSet

metadata:

  generation: 2

  ...

spec:

  replicas: 5

  ...



Pod 2

Deployment Rolling Update

pod 1
scheduled

Pod 1

Kubelet Deployment 
Controller

pod 1 
ready

pod 1
created

Container
Runtime

w
at

ch
 p

o
d

ru
n

 p
o

d

u
p

d
ate p

o
d

 statu
s

p
o

d
 a

va
ila

b
le

p
ro

ceed
 to

 n
ext

d
o

n
e

pod 2
created

pod 2
scheduled

pod 2 
ready

Kubelet

d
o

n
e

ru
n

 p
o

d
w

at
ch

 p
o

d

u
p

d
ate p

o
d

 statu
s

⌧



Pod Readiness Consumer: Service

kind: Service

metadata:

  ...

spec:

  selector:

    label1: value1

    label2: value2

  ...

kind: Endpoints

metadata:

  ...

subsets:

- addresses:

  - ip: ${Pod IP}

    nodeName: ${Node Name}

    targetRef: ${Pod}

  ...



Pod Readiness Consumer: Service

pod
scheduled

Endpoints

Pod

Kubelet Endpoint Controller

pod 
ready

Kube-proxy

endpoint 
ready

pod
created

service
created

Container
Runtime

iptables

w
at

ch
 p

o
d

ru
n

 p
o

d

u
p

d
ate p

o
d

 statu
s w

at
ch

 p
o

d

u
p

d
ate en

d
p

o
in

ts

endpoint 
programmed

w
at

ch
 e

n
d

p
o

in
ts

p
o

d
 started ip

ta
b

le
s 

re
st

o
re

p
ro

gram
m

ed

🐧

⌧



Pod Readiness Consumer: Service

pod
scheduled

Endpoints

Pod

Kubelet Endpoint Controller

pod 
ready

Kube-proxy

endpoint 
ready

pod
created

service
created

Container
Runtime

iptables

w
at

ch
 p

o
d

ru
n

 p
o

d

u
p

d
ate p

o
d

 statu
s w

at
ch

 p
o

d

u
p

d
ate en

d
p

o
in

ts

endpoint 
programmed

w
at

ch
 e

n
d

p
o

in
ts

p
o

d
 started ip

ta
b

le
s 

re
st

o
re

p
ro

gram
m

ed

Programming Latency

🐧

⌧



✓

Rendezvous

Deployment

StatefulSet

Service

Network Policy

Pod



Workload vs. Network Abstractions

Do they work actually together? 



✓

Workload vs. Network Abstractions

Deployment

StaeefulSet

Service

Network Policy

Pod



Pod ReadinessGate Intro



Pod Ready++?

What if kubelet cannot determine pod readiness?

How to make workloads network aware?

How do service health management 
solutions better integrate with K8s 
internal?

Ready++?



Constraints

Backward Compatibility

Backward Compatibility

Backward Compatibility Ready++?



Pod Readiness Gate

Kind: Pod 

… 

spec: 

  readinessGates:

  - conditionType: readiness-gate-a

  - conditionType: readiness-gate-b

… 

status:

  conditions:

  - lastTransitionTime: 2018-01-01T00:00:00Z

    status: "False"

    type: Ready

  - lastTransitionTime: 2018-01-01T00:00:00Z

    status: "False"

    type: readiness-gate-a

  - lastTransitionTime: 2018-01-01T00:00:00Z

    status: "True"

    type: readiness-gate-b

… 



Pod LifeCycle with Readiness Gate

readiness

Draining traffic

start container 1
ready

containers
ready

stopping terminated

Serving traffic

liveness

liveness

readiness

pod

container 2

container 1

ReadinessGate A

ReadinessGate B

pod
ready

Readiness Gate
A ready



Pod Readiness Gate

Pod is Ready
=
  All Containers are Ready
AND
  All ReadinessGate Conditions are True



Pod Readiness Gate

ContainersReady is True
=
  All Containers are Ready

Kind: Pod 

… 

spec: 

  readinessGates:

  - conditionType: readiness-gate-a

  - conditionType: readiness-gate-b

… 

status:

  conditions:

  - lastProbeTime: null

    lastTransitionTime: 2018-01-01T00:00:00Z

    status: "False"

    type: Ready

  - lastProbeTime: null

    lastTransitionTime: 2018-01-01T00:00:00Z

    status: "True"

    type: ContainersReady

  - lastProbeTime: null

    lastTransitionTime: 2018-01-01T00:00:00Z

    status: "False"

    type: readiness-gate-a

  - lastProbeTime: null

    lastTransitionTime: 2018-01-01T00:00:00Z

    status: "True"

    type: readiness-gate-b

… 



Kubectl

$ kubectl get pod -o wide
NAME      READY   STATUS    RESTARTS   AGE    IP            NODE    NOMINATED NODE   READINESS GATES
pod1      1/1     Running   0          11d    10.64.1.96    node    <none>           1/1
pod2      2/2     Running   0          11d    10.64.1.95    node    <none>           2/2
pod3      2/2     Running   0          175m   10.64.2.64    node    <none>           <none>
pod4      3/3     Running   0          175m   10.64.3.85    node    <none>           <none>

Containers Readiness Gates



GKE Use Case:
Container Native Load balancing



Container Native Load Balancing



Container Native Load Balancing

● Pods as first class endpoints

● Features like cookie affinity, 
“Just Work”

● Balances the load without 
downsides of a second hop



Container Native Load Balancing

Rolling Update Challenge:

Programming external LBs is 
slower than iptables

Possible to cause an outage by 
rolling update going faster than LB



Rolling Update

Pod Pod Pod

ReplicaSet
  - name: my-app-v1
  - replicas: 3
  - selector:
     - app: MyApp
     - version: v1

LB

ReplicaSet
  - name: my-app-v2
  - replicas: 1
  - selector:
     - app: MyApp
     - version: v2



Rolling Update

Pod Pod Pod Pod

ReplicaSet
  - name: my-app-v1
  - replicas: 3
  - selector:
     - app: MyApp
     - version: v1

LB

ReplicaSet
  - name: my-app-v2
  - replicas: 1
  - selector:
     - app: MyApp
     - version: v2

Pod - live
Pod - ready
Infra - ?

● Pod Liveness : state of 
application in pod -alive or 
not

● Pod Readiness : ready to 
receive  traffic



● LB not programmed but Pod 
reports ready 

● Pod from previous replicaset 
removed.

● Capacity reduced !.

Wait for 
Infrastructure?

Pod Pod Pod

ReplicaSet
  - name: my-app-v1
  - replicas: 3
  - selector:
     - app: MyApp
     - version: v1

LB

Pod - live
Pod - ready
Infra - ?

ReplicaSet
  - name: my-app-v2
  - replicas: 1
  - selector:
     - app: MyApp
     - version: v2



- New state in Pod life cycle to 
wait - Pod Ready ++ 

 

Pod Ready ++

Pod Pod Pod

ReplicaSet
  - name: my-app-v1
  - replicas: 3
  - selector:
     - app: MyApp
     - version: v1

LB

ReplicaSet
  - name: my-app-v2
  - replicas: 1
  - selector:
     - app: MyApp
     - version: v2

Pod - live
Pod - ready
Infra - wait 



- New state in Pod life cycle to 
wait - Pod Ready ++ 

 

Pod Ready ++

Pod Pod Pod

ReplicaSet
  - name: my-app-v1
  - replicas: 3
  - selector:
     - app: MyApp
     - version: v1

LB

ReplicaSet
  - name: my-app-v2
  - replicas: 1
  - selector:
     - app: MyApp
     - version: v2

Pod -live
Pod - ready
Infra - ready



Intuit Use Case: Foremast



Foremast  and Pod Readiness Gates 
What is Foremast ?

➢ Intuit sponsored Open Source Cloud Native 
health manager platform running on K8s

➢ Leverage Metrics, Logs and Traces observability 
signals

➢ Monitor continuously any new deployment 
rollout strategy like Canary or Blue/Green

➢ Use machine learning on the application health 
signals, detect anomalies and perform 
remediation

Foremast Pod Readiness Gates feature user cases

○  Make sure pod is started and in steady, healthy 
condition, then set Pod Readiness to true to start 
to serve traffic

○ Reset Pod Readiness Condition to not ready if 
Pod health check failed.

It is possible pod/container(application) are fully ready to take traffic.
It may cause  high memory during server start and  high latency for the 
application response time .

How to avoid the gap.

Foremast detected deployment events,  checks PodConditionType  and 
make sure pod/container status is ready,  check if predefined signals 
(metric)  ready,  once ready It will set Pod readiness state to true then 
trigger monitoring as service request to foremast-brain. 

          



Foremast  Leverage 
PodReadinessGates Demo

          



Foremast Team
Reference:
http://foremast.io

GitRepo:
http://github.com/intuit/foremast
http://github.vom/intuit/foremast-brain

http://foremast.io
http://github.com/intuit/foremast
http://github.vom/intuit/foremast-brain


Q & A



Appendix -- Foremast



Appendix -- Foremast



Backup Slides



1. PodReadinessGate API Intro
a. Pod Ready?
b. Container Ready
c. Pod Life Cycle
d. Readiness Gate
e. Custom conditions

2. GCP use case
a. Rolling Update
b. disconnect between K8s network primitives and workloads
c.

3. Foremast Use case
   a. Foremast detected deployment change != pod/container(application)  ready and able to serve traffic
   b.    Foremast detected deployment change and make sure containers ready then trigger monitoring as service request to monitor if there 

is any anomaly for new version,
          

Agenda


